Acknowledgments

This profile was prepared by Latifa Laila Gamal Ghashut, Assistant Professor, Al-Fateh University, College of Agriculture, Department of Home Economics, Tripoli, Libya, in collaboration with Estelle Bader and Chiara Deliglia, Consultants, and Marie Claude Dop, Nutrition Officer, Nutrition Planning, Assessment and Evaluation Service, Food and Nutrition Division, Food and Agriculture Organization of the United Nations.

The contribution of volunteer Amélie Solal-Céligny is gratefully acknowledged.
Summary

The Libyan Arab Jamahiriya, situated in North Africa, is a mostly desert country facing strong constraints in terms of availability of water resources and of food self-sufficiency. The population is relatively young, mostly urban and concentrated in the coastal area. Agriculture is not sufficiently productive to meet the food needs of the population. The country’s economy, largely state controlled, is heavily dependent on oil production and exports.

The government has invested in health care, sanitation and education. As a result, levels of immunization of children are high, polio has been eradicated, access to improved water sources and sanitation is good, and important efforts are made to combat the spread of HIV/AIDS.

The food supply, characterized by a high availability of fruit and vegetables, has increased markedly overtime, particularly since the late 1970s. The dietary energy supply largely satisfies the population’s energy requirements. Moreover the three most important food groups, cereals, vegetable oil and sweeteners provide almost three quarters of the energy supply. This diet, dense in energy and poor in micronutrients is conducive to overnutrition. Currently, Libya is totally dependent on imports of cereals.

Breastfeeding is widespread and its early initiation is common. However, the duration of exclusive breastfeeding remains very short and bottle-feeding is frequent. In 1995, almost one child out of six was stunted, but more recent estimates are needed to assess the current nutritional status of preschool children. Meanwhile the country is undergoing a nutrition transition. Consequently adult women are affected by a high prevalence of overweight and obesity. Among women both undernutrition and overnutrition are prevalent. The country thus suffers from the double burden of malnutrition.

Due to lack of data, assessing the extent of micronutrient deficiencies remains difficult. A salt iodization programme is in place but no data are available to assess its impact. Prevalence of vitamin A deficiency is not documented. Anemia could be a major public health issue, as recent but limited data from Tripoli, the capital, showed that more than two-thirds of school-age children were affected. There is currently no programme to address iron deficiency anemia. It is of vital importance to carry out a national nutrition survey to assess the current prevalence of nutrition problems, to target vulnerable groups and to define effective strategies to combat both undernutrition and overnutrition.
Summary Table

<table>
<thead>
<tr>
<th>Basic Indicators</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>Total population</td>
<td>5.8 million</td>
</tr>
<tr>
<td>Rural population</td>
<td>15%</td>
</tr>
<tr>
<td>Population under 15 years of age</td>
<td>33%</td>
</tr>
<tr>
<td>Annual population growth rate</td>
<td>2%</td>
</tr>
<tr>
<td>Life expectancy at birth</td>
<td>73 years</td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
</tr>
<tr>
<td>Agricultural area</td>
<td>9%</td>
</tr>
<tr>
<td>Arable and permanent cropland per agricultural inhabitant</td>
<td>6 Ha</td>
</tr>
<tr>
<td>Human development and poverty</td>
<td></td>
</tr>
<tr>
<td>Human development index</td>
<td>0.794 [0-1]</td>
</tr>
<tr>
<td>Proportion of population living with less than 1$ a day (PPP)</td>
<td>MDG1 n.a.</td>
</tr>
<tr>
<td>Population living below the national poverty line</td>
<td>MDG1 n.a.</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Net primary enrolment ratio</td>
<td>MDG2 96%</td>
</tr>
<tr>
<td>Youth literacy (15-24 years)</td>
<td>MDG2 97%</td>
</tr>
<tr>
<td>Ratio of girls to boys in primary education</td>
<td>MDG3 1 girl per 1 boy</td>
</tr>
<tr>
<td>Health</td>
<td></td>
</tr>
<tr>
<td>Infant mortality rate</td>
<td>MDG4 13‰</td>
</tr>
<tr>
<td>Under-five mortality rate</td>
<td>MDG4 16‰</td>
</tr>
<tr>
<td>Maternal mortality ratio (adjusted)</td>
<td>MDG5 97 per 100 000 live births</td>
</tr>
<tr>
<td>Tuberculosis prevalence</td>
<td>MDG6 21 per 100 000 people</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Sustainable access to an improved water source in rural area</td>
<td>MDG7 68%</td>
</tr>
<tr>
<td>Energy requirements</td>
<td></td>
</tr>
<tr>
<td>Population energy requirements</td>
<td>2 144 kcal per capita/day</td>
</tr>
<tr>
<td>Food supply</td>
<td></td>
</tr>
<tr>
<td>Dietary Energy Supply (DES)</td>
<td>3 327 kcal per capita/day</td>
</tr>
<tr>
<td>Prevalence of undernourishment</td>
<td>MDG1 n.a.</td>
</tr>
<tr>
<td>Share of protein in DES</td>
<td>11%</td>
</tr>
<tr>
<td>Share of lipids in DES</td>
<td>27%</td>
</tr>
<tr>
<td>Food diversification index</td>
<td>51%</td>
</tr>
<tr>
<td>Food consumption</td>
<td></td>
</tr>
<tr>
<td>Average energy intake (per capita or per adult)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Percent of energy from protein</td>
<td>n.a.</td>
</tr>
<tr>
<td>Percent of energy from lipids</td>
<td>n.a.</td>
</tr>
<tr>
<td>Infant and young child feeding</td>
<td></td>
</tr>
<tr>
<td>Exclusive breastfeeding rate</td>
<td><6 months</td>
</tr>
<tr>
<td>Timely complementary feeding rate</td>
<td>6-9 months</td>
</tr>
<tr>
<td>Bottle-feeding rate</td>
<td>0-11 months</td>
</tr>
<tr>
<td>Continued breastfeeding rate at 2 years of age</td>
<td>23%</td>
</tr>
<tr>
<td>Nutritional anthropometry</td>
<td></td>
</tr>
<tr>
<td>Stunting in children under 5 years</td>
<td>15%</td>
</tr>
<tr>
<td>Wasting in children under 5 years</td>
<td>3%</td>
</tr>
<tr>
<td>Underweight in children under 5 years</td>
<td>MDG1 5%</td>
</tr>
<tr>
<td>Women with BMI<18.5 kg/m²</td>
<td>n.a.</td>
</tr>
<tr>
<td>Micronutrient deficiencies</td>
<td></td>
</tr>
<tr>
<td>Prevalence of goitre in school-age children</td>
<td>n.a.</td>
</tr>
<tr>
<td>Percentage of households consuming adequately iodized salt</td>
<td>n.a.</td>
</tr>
<tr>
<td>Prevalence of vitamin A deficiency in preschool children</td>
<td>n.a.</td>
</tr>
<tr>
<td>Prevalence of vitamin A supplementation in preschool children</td>
<td>n.a.</td>
</tr>
<tr>
<td>Prevalence of vitamin A supplementation in mothers</td>
<td>n.a.</td>
</tr>
<tr>
<td>Prevalence of anemia in women</td>
<td>n.a.</td>
</tr>
<tr>
<td>Prevalence of iron supplementation in mothers</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

MDG: Millennium Development Goal; n.a.: not available
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>2</td>
</tr>
<tr>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>Summary Table</td>
<td>4</td>
</tr>
<tr>
<td>List of tables and figures</td>
<td>6</td>
</tr>
<tr>
<td>Acronyms</td>
<td>7</td>
</tr>
<tr>
<td>Part I: Overview and basic indicators</td>
<td>8</td>
</tr>
<tr>
<td>I.1 Context</td>
<td>8</td>
</tr>
<tr>
<td>I.2 Population</td>
<td>8</td>
</tr>
<tr>
<td>Population indicators</td>
<td>8</td>
</tr>
<tr>
<td>Population pyramid for 2001</td>
<td>9</td>
</tr>
<tr>
<td>I.3 Agriculture</td>
<td>9</td>
</tr>
<tr>
<td>Land use and irrigation statistics</td>
<td>10</td>
</tr>
<tr>
<td>Main crops, agricultural calendar, seasonal food shortage</td>
<td>10</td>
</tr>
<tr>
<td>Livestock production and fishery</td>
<td>10</td>
</tr>
<tr>
<td>I.4 Economy</td>
<td>11</td>
</tr>
<tr>
<td>I.5 Social indicators</td>
<td>11</td>
</tr>
<tr>
<td>Health indicators</td>
<td>11</td>
</tr>
<tr>
<td>Water and sanitation</td>
<td>12</td>
</tr>
<tr>
<td>Access to health services</td>
<td>13</td>
</tr>
<tr>
<td>Education</td>
<td>13</td>
</tr>
<tr>
<td>Level of development, poverty</td>
<td>13</td>
</tr>
<tr>
<td>Other social indicators</td>
<td>14</td>
</tr>
<tr>
<td>Part II: Food and nutrition situation</td>
<td>15</td>
</tr>
<tr>
<td>II.1 Qualitative aspects of the diet and food security</td>
<td>15</td>
</tr>
<tr>
<td>Food consumption patterns</td>
<td>15</td>
</tr>
<tr>
<td>Food security situation</td>
<td>15</td>
</tr>
<tr>
<td>II.2 National food supply data</td>
<td>15</td>
</tr>
<tr>
<td>Supply of major food groups</td>
<td>15</td>
</tr>
<tr>
<td>Dietary energy supply, distribution by macronutrient and diversity of the food supply</td>
<td>16</td>
</tr>
<tr>
<td>Vegetable/animal origin of macronutrients</td>
<td>17</td>
</tr>
<tr>
<td>Dietary energy supply by food group</td>
<td>17</td>
</tr>
<tr>
<td>Food imports and exports expressed as percentage of DES</td>
<td>18</td>
</tr>
<tr>
<td>II.3 Food consumption</td>
<td>19</td>
</tr>
<tr>
<td>National level surveys</td>
<td>19</td>
</tr>
<tr>
<td>II.4 Infant and young child feeding practices</td>
<td>21</td>
</tr>
<tr>
<td>II.5 Nutritional anthropometry</td>
<td>21</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>21</td>
</tr>
<tr>
<td>Anthropometry of preschool children</td>
<td>21</td>
</tr>
<tr>
<td>Anthropometry of school-age children and adolescents</td>
<td>23</td>
</tr>
<tr>
<td>Anthropometry of adult women</td>
<td>23</td>
</tr>
<tr>
<td>Anthropometry of adult men</td>
<td>24</td>
</tr>
<tr>
<td>II.6 Micronutrient deficiencies</td>
<td>24</td>
</tr>
<tr>
<td>Iodine deficiency disorders (IDD)</td>
<td>24</td>
</tr>
<tr>
<td>Prevalence of goitre and urinary iodine level</td>
<td>24</td>
</tr>
<tr>
<td>Iodization of salt at household level</td>
<td>24</td>
</tr>
<tr>
<td>Vitamin A deficiency (VAD)</td>
<td>24</td>
</tr>
<tr>
<td>Prevalence of sub-clinical and clinical vitamin A deficiency and supplemenation</td>
<td>24</td>
</tr>
<tr>
<td>Iron deficiency anemia (IDA)</td>
<td>25</td>
</tr>
<tr>
<td>Prevalence of IDA</td>
<td>25</td>
</tr>
<tr>
<td>Interventions to combat IDA</td>
<td>25</td>
</tr>
<tr>
<td>II.7 Policies and programmes aiming to improve nutrition and food security</td>
<td>25</td>
</tr>
<tr>
<td>Reference list</td>
<td>26</td>
</tr>
</tbody>
</table>
List of tables

Table 1: Population indicators ... 9
Table 2: Land use and irrigation ... 10
Table 3: Livestock and fishery statistics .. 10
Table 4: Basic economic indicators ... 11
Table 5: Health indicators .. 12
Table 6: Access to safe water and sanitation .. 12
Table 7: Access to Health Services ... 13
Table 8: Education ... 13
Table 9: Human development and poverty .. 13
Table 10: Other social indicators .. 14
Table 11: Trends in per capita supply of major food groups (in g/day) ... 15
Table 12: Share of the main food groups in the Dietary Energy Supply (DES), trends 18
Table 13: Food consumption data ... 20
Table 14: Anthropometry of preschool children .. 22
Table 15: Anthropometry of adult women ... 23
Table 16: Anthropometry of adult men ... 24

List of figures

- Figure 1: Dietary energy supply (DES), trends and distribution by macronutrient............ 16
- Figure 2: Vegetable/animal origin of energy, protein and lipid supplies 17
- Figure 3: Dietary energy supply by food group ... 17
- Figure 4: Major food exports as percentage of Dietary Energy Supply (DES), trends ... 18
- Figure 5: Major food imports as percentage of Dietary Energy Supply (DES), trends ... 19
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMCHS</td>
<td>Arab League Mother and Child Survey</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CED</td>
<td>Chronic energy deficiency</td>
</tr>
<tr>
<td>DES</td>
<td>Dietary energy supply</td>
</tr>
<tr>
<td>DPT3</td>
<td>Diphtheria, pertussis (whooping cough) and tetanus vaccine – three doses</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>FAO Statistical Databases</td>
</tr>
<tr>
<td>FIVIMS</td>
<td>Food Insecurity and Vulnerability Information and Mapping Systems</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GNP</td>
<td>Gross national product</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Human immunodeficiency virus/ acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ICCIDD</td>
<td>International Council for Control of Iodine Deficiency Disorders</td>
</tr>
<tr>
<td>IDA</td>
<td>Iron deficiency anemia</td>
</tr>
<tr>
<td>IDD</td>
<td>Iodine deficiency disorders</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organization</td>
</tr>
<tr>
<td>ILRI</td>
<td>International Livestock Research Institute</td>
</tr>
<tr>
<td>IMF</td>
<td>International Monetary Fund</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>MICS</td>
<td>Multiple Indicator Cluster Survey</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>PAPCHILD</td>
<td>Pan-Arab Project for Child Surveys</td>
</tr>
<tr>
<td>PPP</td>
<td>Purchase power parity</td>
</tr>
<tr>
<td>SuRF</td>
<td>Surveillance of chronic disease Risk Factor</td>
</tr>
<tr>
<td>UNAIDS</td>
<td>Joint United Nations Programme on HIV/AIDS</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>UNPD</td>
<td>United Nations Population Division</td>
</tr>
<tr>
<td>UNSTAT</td>
<td>United Nations Statistics Division</td>
</tr>
<tr>
<td>VAD</td>
<td>Vitamin A deficiency</td>
</tr>
<tr>
<td>WB</td>
<td>World Bank</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Part I: Overview and basic indicators

I.1 Context

The Libyan Arab Jamahiriya has a total area of about 1.76 million km2, bordered in the north by the Mediterranean Sea, in the east by Egypt and Sudan, in the south by Chad and Niger, and in the west by Algeria and Tunisia. There are four types of areas in Libya: the coastal plains, that run along the Mediterranean sea and vary in width; the northern mountains, that run close to the coastal plains and include the Jabal Nafusah in the west and Jabal al Akhdar in the east; the internal depressions, that cover the centre of Libya and include several oases; and the southern and western mountains.

About 95% of the country is covered by desert. The climate conditions are influenced by the Mediterranean Sea to the north and the Sahara desert to the south, resulting in an abrupt transition from one kind of weather to the other. The Mediterranean coastal strip has dry summers and relatively wet winters, whereas the Jabal Natusah and Jabal Akhdar highlands present a plateau climate with higher rainfall and humidity and low winter temperatures. In the southern inland part, pre-desert and desert climate conditions prevail, with torrid temperatures and large thermal amplitudes. Rains are rare and irregular.

Annual rainfall is extremely low, with about 93% of the land surface receiving less than 100 mm/year. The highest rainfall occurs in the northern Tripoli region (Jabal Nafusah and Jifarah Plain) and in the northern Benghazi region (Jabal al Akhdar), these two areas being the only ones where the average annual rainfall exceeds the minimum value (250-300 mm) considered necessary to sustain rain fed agriculture. Rainfall occurs during the winter months, but great variability is observed from place to place and from year to year. Average annual rainfall for the country as a whole is 26 mm (FAO, 2005a).

The country’s isolation, resulting in part from the United Nations’ sanctions imposed until April 1999 has hampered economic development (IMF, 2003).

I.2 Population

Population indicators

The Libyan population is relatively young, with 33% under 15 years of age. Over the last 30 years, Libya’s population has grown at rates of about 2-3% per year. As a result, the working-age population has been growing at about the same rate in the 1990s and is still growing currently (IMF, 2003; UNPD, World Population Prospects). However, population growth takes place only in the urban areas, the rural population showing a slight decline. Average population density varies from 150 inhabitants/km2 in the northern regions to less than 1 inhabitant/km2 in the rest of the country. About 75% of the population is concentrated in 1.5% of the country, mainly in the coastal areas (FAO, 2005a). The population is essentially urban.
Table 1: Population indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference Period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>5.8</td>
<td>Million</td>
<td>2004</td>
<td>NIDA</td>
</tr>
<tr>
<td>Annual population growth rate</td>
<td>1.96</td>
<td>%</td>
<td>2000-2005</td>
<td>UNPD</td>
</tr>
<tr>
<td>Crude birth rate</td>
<td>23.3</td>
<td>‰</td>
<td>2000-2005</td>
<td>UNPD</td>
</tr>
<tr>
<td>Population distribution by age:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4 years</td>
<td>11</td>
<td>%</td>
<td>2000</td>
<td>UNPD</td>
</tr>
<tr>
<td>5-14 years</td>
<td>22</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-24 years</td>
<td>24</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 and over</td>
<td>6</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural population</td>
<td>15</td>
<td>%</td>
<td>2000</td>
<td>UNPD</td>
</tr>
<tr>
<td>Agricultural population</td>
<td>5</td>
<td>%</td>
<td>2004</td>
<td>FAOSTAT</td>
</tr>
<tr>
<td>Population density</td>
<td>3</td>
<td>Inhabitants per km2</td>
<td>2000</td>
<td>UNPD</td>
</tr>
<tr>
<td>Median age</td>
<td>22</td>
<td>years</td>
<td>2000</td>
<td>UNPD</td>
</tr>
<tr>
<td>Life expectancy at birth</td>
<td>73</td>
<td>years</td>
<td>2000-2005</td>
<td>UNPD</td>
</tr>
<tr>
<td>Population sex ratio</td>
<td>107.5</td>
<td>males per 100 female</td>
<td>2000</td>
<td>UNDP</td>
</tr>
<tr>
<td>Net migration rate</td>
<td>0.4</td>
<td>‰</td>
<td>2000-2005</td>
<td>UNPD</td>
</tr>
<tr>
<td>Total dependency rate</td>
<td>57</td>
<td>%</td>
<td>2000</td>
<td>UNPD</td>
</tr>
</tbody>
</table>

Population pyramid for 2001

Source: UNAIDS, 2002

I.3 Agriculture

Agriculture contributes to about 9% of the Gross Domestic Product (GDP) and provides employment to about 5% of the total economically active population (FAO, 2005a).

Hot and dry desert climate and scarcity of water affect agricultural production. Less than 10% of the total surface of Libya is suitable for agriculture. This area is limited to a long narrow strip along the Mediterranean coast, low mountains and oases in the desert. Areas of arid land and desert cover up about 90% of the total area (Al-Idrissi et al, 1996; FAO, FAOSTAT Database).

Agriculture in Libya is seasonal; data for 2003 show that 78 % of the cultivable area is not irrigated (FAO, FAOSTAT Database).

Agricultural production depends both on the private and the state sector, the latter being the predominant producer of grains (Al-Idrissi et al, 1996).
Given the arid nature of much of the territory, irrigated farming systems have always been of crucial importance in generating much of the country's agricultural output. About 50% of the cereal production and about 90% of the fruit and vegetables' production originates from irrigated agriculture (FAO, 2005a).

Land use and irrigation statistics

Table 2: Land use and irrigation

<table>
<thead>
<tr>
<th>Type of area</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Land Area</td>
<td>175 954</td>
<td>1000 Ha</td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Agricultural Area</td>
<td>9 %</td>
<td></td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Arable lands and Permanent Crops</td>
<td>1 %</td>
<td></td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Permanent Crops</td>
<td><1 %</td>
<td></td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Permanent Pasture</td>
<td>8 %</td>
<td></td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Forested Land Areas</td>
<td><1 %</td>
<td></td>
<td>2000</td>
<td>FAO</td>
</tr>
<tr>
<td>Irrigated Agricultural Land</td>
<td><1 %</td>
<td></td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Arable & Permanent Cropland in Ha per agricultural inhabitant</td>
<td>6 Ha</td>
<td>2002</td>
<td>FAO</td>
<td></td>
</tr>
</tbody>
</table>

N.B. Percents are calculated on the total land area.

Main crops, agricultural calendar, seasonal food shortage

The 5 main food commodities produced in Libya in 2002 were cow milk, wheat, watermelons, fresh vegetables and maize (FAO, Statistics Division). All these commodities were almost entirely used for local human consumption, except maize that was used as animal feed (FAO, FAOSTAT Database).

Livestock production and fishery

Animal production contributes approximately 30% of the total agricultural production, providing meat, milk, dairy products and eggs. Sheep, goats and camels are the main livestock species. The supply of animal products does not meet the national demand, partly because of climate conditions, feed shortage and lack of governmental support (Al-Masri, 2000).

Fisheries in Libya are mainly marine, with negligible inland fisheries and aquaculture. Fish products are destined to local human consumption. Per capita supply of fisheries products was of about 7 kg per year in 2001 (FAO, 2005b).

Table 3: Livestock and fishery statistics

<table>
<thead>
<tr>
<th>Livestock production and fishery</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>130 000</td>
<td>number of heads</td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Sheep and Goats</td>
<td>5 765 000</td>
<td>number of heads</td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Poultry Birds</td>
<td>25 000</td>
<td>thousands</td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Fish catch and aquaculture</td>
<td>33 666</td>
<td>tons</td>
<td>2002</td>
<td>FAO</td>
</tr>
</tbody>
</table>
I.4 Economy

Libya’s economy, which remains largely state controlled and heavily dependent on the oil sector, grew solidly in 2003/04, reflecting favourable developments in world oil markets (IMF, 2005). The oil sector contributes practically all export earnings and about 25% of the GDP. The non-oil manufacturing and construction sectors have expanded from processing mostly agricultural products to including the production of petrochemicals, iron, steel, and aluminium (FAO, 2005a).

The public sector plays a dominant role: to absorb the labour force resulting from to the growth of the working-age population, the government increased public sector employment. In 2001, civil service and public sector represented respectively 53% and 24% of total employment of Libyan nationals (IMF, 2003).

Table 4: Basic economic indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference Period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Domestic Product per capita</td>
<td>7 570</td>
<td>PPP US $</td>
<td>2002</td>
<td>UNDP</td>
</tr>
<tr>
<td>GDP annual growth</td>
<td>3.2</td>
<td>%</td>
<td>2005</td>
<td>FAO</td>
</tr>
<tr>
<td>Gross National Income per capita</td>
<td>4 450</td>
<td>$</td>
<td>2004</td>
<td>WB</td>
</tr>
<tr>
<td>Industry as % of GDP</td>
<td>36</td>
<td>%</td>
<td>2002</td>
<td>WB</td>
</tr>
<tr>
<td>Agriculture as % of GDP</td>
<td>9</td>
<td>%</td>
<td>2002</td>
<td>FAO</td>
</tr>
<tr>
<td>Services as % of GDP</td>
<td>39</td>
<td>%</td>
<td>1984</td>
<td>WB</td>
</tr>
<tr>
<td>Paved roads as % of total roads</td>
<td>57</td>
<td>%</td>
<td>1999</td>
<td>WB</td>
</tr>
<tr>
<td>Internet users</td>
<td>16</td>
<td>per 10 000 people</td>
<td>2003</td>
<td>ITU</td>
</tr>
<tr>
<td>Total debt service as % of GDP</td>
<td>12</td>
<td>%</td>
<td>94</td>
<td>WB</td>
</tr>
<tr>
<td>Military Public expenditure</td>
<td>2.4</td>
<td>% of GDP</td>
<td>2002</td>
<td>UNDP</td>
</tr>
</tbody>
</table>

Oil earnings constituted about 95% of the Libyan exports’ value and 60% of budgetary revenue in 1997-2002. Non-oil activities and the private sector remain hindered by a complex regulatory regime and widespread government interventions. The public sector also accounts for 73% all imports, constituted by machinery, transport equipment, semi-finished goods, food commodities and consumer products (IMF, 2003).

I.5 Social indicators

Health indicators

Libya has invested in public health. Some health indicators are very favourable. Infant and underfive mortality rates are low. According to the PAPCHILD 1995 survey on mother and child health, about 81% of pregnant women received antenatal care, and 82% of children received complete vaccination, with no significant difference between urban and rural areas but only 17% of pregnant women were vaccinated for tetanus (ALMCHS, 1995). Polio was eradicated in 2003. In September 2002, the Libyan government launched a National Programme for combating HIV/AIDS. A key component was the active participation of both public and NGO sectors, including mosques, sports clubs and communities (UNICEF, information by country).
Table 5: Health indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference Period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant mortality</td>
<td>13</td>
<td>‰</td>
<td>2003</td>
<td>UNICEF</td>
</tr>
<tr>
<td>Under-five mortality</td>
<td>16</td>
<td>‰</td>
<td>2003</td>
<td>UNICEF</td>
</tr>
<tr>
<td>Maternal mortality ratio:</td>
<td>77</td>
<td>per 100 000 live births</td>
<td>1985-2003</td>
<td>UNICEF</td>
</tr>
<tr>
<td>reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjusted</td>
<td>97</td>
<td>per 100 000 live births</td>
<td>2000</td>
<td>UNICEF</td>
</tr>
<tr>
<td>Morbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence of diarrhoea in the last 2 weeks in under-fives</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Rehydration rate among under-fives</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of under-fives with acute respiratory infections in the last 2 weeks</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis prevalence</td>
<td>21</td>
<td>per 100 000 people</td>
<td>2003</td>
<td>UNSTAT</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence of HIV/AIDS cases in adults</td>
<td>0.3</td>
<td>%</td>
<td>2003</td>
<td>UNSTAT</td>
</tr>
<tr>
<td>Percentage of women (15-24) who know that a person can protect herself from HIV infection by consistent condom use</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of infants with immunization against tuberculosis at 1 year of age</td>
<td>99</td>
<td>%</td>
<td>2003</td>
<td>UNICEF/WHO</td>
</tr>
<tr>
<td>Percent of infants with DTP3 immunization at 1 year of age</td>
<td>93</td>
<td>%</td>
<td>2003</td>
<td>UNICEF/WHO</td>
</tr>
<tr>
<td>Percent of infants with immunization against measles at 1 year of age</td>
<td>91</td>
<td>%</td>
<td>2003</td>
<td>UNICEF/WHO</td>
</tr>
<tr>
<td>Percent of pregnant women immunized against tetanus</td>
<td>17</td>
<td>%</td>
<td>1995</td>
<td>ALMCHS</td>
</tr>
</tbody>
</table>

n.a.: not available

Water and sanitation

In 2002, 71% of the total population had access to improved drinking water sources. About 97% of the urban population and 96% of the rural population had access to improved sanitation services.

Table 6: Access to safe water and sanitation

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable access to an improved water source:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>72</td>
<td>% of population</td>
<td>2002</td>
<td>WHO</td>
</tr>
<tr>
<td>Rural</td>
<td>68</td>
<td>% of population</td>
<td>2002</td>
<td>WHO</td>
</tr>
<tr>
<td>Access to improved sanitation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined urban/rural</td>
<td>97</td>
<td>% of population</td>
<td>2002</td>
<td>UNICEF</td>
</tr>
</tbody>
</table>
Access to health services

Detailed information on access to health services is lacking. Although the health system is quite well developed in Libya, UNICEF reports indicate that many Libyans seek medical services in neighbouring countries, especially in Tunisia (UNICEF, information by country).

Table 7: Access to Health Services

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference Period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health personnel: number of physicians</td>
<td>120</td>
<td>per 100 000 people</td>
<td>1990-2003</td>
<td>WHO</td>
</tr>
<tr>
<td>Population with sustainable access to affordable essential drugs</td>
<td>good access*</td>
<td></td>
<td>1999</td>
<td>UNDP</td>
</tr>
<tr>
<td>Percent of births attended by skilled health personnel</td>
<td>94</td>
<td>%</td>
<td>1995</td>
<td>UNICEF</td>
</tr>
<tr>
<td>Public expenditure on Health</td>
<td>1.6</td>
<td>% of GDP</td>
<td>2001</td>
<td>UNESCO</td>
</tr>
</tbody>
</table>

* estimated at 95-100% of total population

Education

Compulsory basic education has been extended to nine years instead of the former six years; the rate of attendance in elementary, secondary and high school is about 92%. Adult literacy rate is 91% for males and 68% for females (UNICEF, 2004). However, the educational system is not able to provide an adequately skilled workforce to match the needs of the employment market (IMF, 2003).

Table 8: Education

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference Period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult literacy rate</td>
<td>82</td>
<td>%</td>
<td>2002</td>
<td>UNESCO</td>
</tr>
<tr>
<td>Adult literacy rate : females as % of males</td>
<td>77</td>
<td>%</td>
<td>2002</td>
<td>UNESCO</td>
</tr>
<tr>
<td>Youth literacy (15-24 years)</td>
<td>97</td>
<td>%</td>
<td>2002</td>
<td>UNESCO</td>
</tr>
<tr>
<td>Net primary enrolment rate</td>
<td>96</td>
<td>%</td>
<td>1990-1991</td>
<td>UNESCO</td>
</tr>
<tr>
<td>Grade 5 completion rate</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of girls to boys in primary education</td>
<td>1.0</td>
<td>number of girls per 1 boy</td>
<td>2001</td>
<td>UNESCO</td>
</tr>
<tr>
<td>Public expenditure on education</td>
<td>2.7</td>
<td>% of GDP</td>
<td>1999-2001</td>
<td>UNESCO</td>
</tr>
</tbody>
</table>

n.a.: not available

Level of development, poverty

There are no official data available on poverty rates and revenue distribution in Libya.

The limit of the employment capacity of the public sector has been reached. The inadequacy of the educational system to satisfy the needs of the market has resulted in the employment of foreign, better-educated labour forces, which are paid higher wages (IMF, 2003). The unemployment rate is high, at about 30% (FAO, 2005a).

Table 9: Human development and poverty

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human development index (HDI)</td>
<td>0.794</td>
<td>value between 0-1</td>
<td>2002</td>
<td>UNDP</td>
</tr>
<tr>
<td>Proportion of population living with less than 1$ a day (PPP)</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population living below the national poverty line</td>
<td>n.a.</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human poverty index (HPI-1)</td>
<td>15.3</td>
<td>%</td>
<td>2003</td>
<td>UNDP</td>
</tr>
</tbody>
</table>

n.a.: not available
Other social indicators

While women represent 25% of the economically active population, in the agricultural sector women account for 67% of the labour force (FAO, 2005a).

Table 10: Other social indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Estimate</th>
<th>Unit</th>
<th>Reference period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender related development index (GDI)</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women’s wage employment in non-agricultural sector as % of total non agricultural employees</td>
<td>15</td>
<td>%</td>
<td>1990</td>
<td>UNSTAT</td>
</tr>
<tr>
<td>Ratification of ILO Convention 182 on The Worst Forms of Child Labour</td>
<td>ratified</td>
<td></td>
<td>2000</td>
<td>ILO</td>
</tr>
</tbody>
</table>

n.a.: not available
II.1 Qualitative aspects of the diet and food security

Food consumption patterns

Wheat is the staple food of the Libyan diet, consumed principally as bread, couscous and macaroni. Couscous is the major traditional food whereas macaroni is the easily prepared fast-growing dish. Rice consumption is spreading and it is the only food product totally imported. Of pulses, the most consumed are chickpeas, lentils, dried beans and fava beans. Meat, principally poultry, lamb and mutton, beef or camel, is an important part of Libyan meals. Milk is consumed mainly for breakfast, with increased consumption in the month of Ramadan. A wide variety of seasonal vegetables and fruit are abundantly available with a large production of citrus fruit and dates. Olive oil is produced locally, but imports of subsidized corn oil – which is widely used for cooking, frying and baking – have increased. Animal fat is rarely used. Usually, there are three meals a day, lunch being the main meal.

Food security situation

With very limited renewable water resources, Libya relies heavily on imports to match food needs. In 2000, import of cereals, sugar and oil represented a large share of the national budget. Presently, food security at national level has been achieved (FAO, 2005a). No data are currently available on the food security situation at sub-national level.

II.2 National food supply data

Supply of major food groups

Table 11: Trends in per capita supply of major food groups (in g/day)

<table>
<thead>
<tr>
<th>Major food groups</th>
<th>Supply for human consumption in g/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit and vegetables</td>
<td>335</td>
</tr>
<tr>
<td>Cereals (excl. beer)</td>
<td>384</td>
</tr>
<tr>
<td>Milk and eggs</td>
<td>136</td>
</tr>
<tr>
<td>Sweeteners</td>
<td>62</td>
</tr>
<tr>
<td>Starchy roots</td>
<td>16</td>
</tr>
<tr>
<td>Meat and offals</td>
<td>59</td>
</tr>
<tr>
<td>Pulses, nuts, oilcrops</td>
<td>27</td>
</tr>
<tr>
<td>Vegetable oils</td>
<td>26</td>
</tr>
<tr>
<td>Fish, seafood</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>28</td>
</tr>
<tr>
<td>Animal fats</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: FAOSTAT

The food supply of Libya is very abundant. The supply of major food groups has increased markedly overtime. The supplies of fruit and vegetables, pulses and vegetable oils have more than doubled between 1965/67 and 2000/02. The supply of starchy roots increased six-fold during the same period. The increasing trend in food supply from 1965/67 can be explained by the prosperous economy due to oil production. During the 1980’s, for several food groups such as cereals, meat, milk and eggs, fruit and vegetables, there was a decrease in supplies due to changes in national policies which aimed to reduce imports and rely more on local production to meet the country’s food requirements.
The food supply is characterised by a high availability of fruit and vegetables (locally produced dates and imported tomatoes in majority) as compared to other North African countries. Between 1965/67 and 1972/74, this supply has more than doubled and then remained above 700g/per capita/day. Cereals are the second major food group in terms of supply, rising since 1965/67. The supply of cereals is mainly constituted by imported wheat, which represented about 70% of the total supply of cereals in 2002. The supply of starchy roots (locally produced potatoes) increased considerably, particularly between 1965/67 and 1979/81. The same observation is valid for vegetable oils (maize germ oil, olive oil) the supply of which reached 61g/day in 2000/02. Since 1965/67, the supply of animal products has also increased. Current per capita supply of milk and eggs, meat (poultry, mutton and goat meat) and fish are relatively important (FAO, FAOSTAT Database).

Dietary energy supply, distribution by macronutrient and diversity of the food supply

- Figure 1: Dietary energy supply (DES), trends and distribution by macronutrient

Figure 1: Trends in DES per capita and percentages from protein, lipids & carbohydrates

In 2001, the dietary energy supply (DES) was 3,327 kcal/per capita/day, which is well above population energy requirements of 2,144 kcal/per capita/day.\(^1\)

The per capita DES increased from 2,061 kcal/day in 1965/67 to 3,324 kcal/day in 2000/02. Presently, the share of macronutrients in the total DES is 62% for carbohydrates, 27% for lipids and 11% for protein (FAO, FAOSTAT Database). The share of lipids is adequate in comparison to recommendations (energy from lipids not exceeding 30%) (WHO, 2003). Between 1965/67 and 2000/02, the share of protein remained stable, whereas there was an increase in the share of DES from lipids and a decrease in that from carbohydrates (FAO, FAOSTAT Database).

\(^1\) Energy requirements are for a healthy and active lifestyle calculated using the FAO software (FAO, 2004a). Software default values attribute to 90% of the urban adult population a light physical activity level (PAL=1.55) and greater than light activity to the remaining 10% (PAL=1.85), and to 50% of the rural adult population a light activity (PAL=1.65) and greater than light physical activity (PAL=1.95) to the other 50%.
Vegetable/animal origin of macronutrients

- Figure 2: Vegetable/animal origin of energy, protein and lipid supplies

![Figure 2: Origin of energy, protein and lipid supplies, 2000-2002](image)

As a result of the high supply of vegetable food groups, macronutrients are predominantly of vegetable origin. Vegetable foods provide 89% of total energy, 73% of protein and 77% of lipids (FAO, FAOSTAT Database).

Dietary energy supply by food group

- Figure 3: Dietary energy supply by food group

![Figure 3: Percentage of energy provided by major food group in 2000-2002](image)

N.B. Values under 1% are not presented.
Energy provided by the most important food groups, namely cereals, vegetable oils and sweeteners, amounts to almost three-quarters of the DES. Consequently the diet can be considered as energy-dense. These three food groups are subsidized by the Libyan government.

Table 12: Share of the main food groups in the Dietary Energy Supply (DES), trends

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals (excl. beer)</td>
<td>52</td>
<td>45</td>
<td>44</td>
<td>44</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>Vegetable oils</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Sweeteners</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fruit and vegetables</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pulses, nuts, oilcrops</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Milk and eggs</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Meat and offals</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Starchy roots</td>
<td><1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Animal fats</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Fish, seafood</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

Source: FAOSTAT

The share of cereals in DES decreased between 1965/67 and 1986/88 and then slightly increased in comparison with the previous period (FAO, FAOSTAT Database). The food diversification index (energy provided by groups other than cereal and starchy roots) increased from 47% in 1965/67 to 51% in 2000/02. The diet is becoming more diverse although this change is slow and still insufficient. This progress is linked to the rapidly growing urbanization.

Food imports and exports expressed as percentage of DES

Oilcrops (groundnut oil) and vegetable oils are the main food exports but they remain quantitatively limited.

- Figure 4: Major food exports as percentage of Dietary Energy Supply (DES), trends

Figure 4: Food exports expressed as percentage of DES, trends.

Note that only the 3 most important food groups are shown.
Libya is highly dependant on imports of cereals, principally wheat. These imports have increased throughout the period. Population growth increased cereal needs and local production of wheat could not meet the domestic demand. Imported cereals are for both human consumption and animal feed. While the country produces and exports olive oil, it nevertheless imports maize germ oil, which represents more than half of the supply of vegetable oils (FAO, FAOSTAT Database).

- Figure 5: Major food imports as percentage of Dietary Energy Supply (DES), trends

Figure 5: Food imports expressed as percentage of DES, trends.

![Figure 5: Food imports expressed as percentage of DES, trends.](image)

Note that only the 3 most important food groups are shown.

II.3 Food consumption

National level surveys

There is a lack of recent and nationally representative data on food consumption.

In 1999, a study of individual dietary intake estimated energy intake at 2,149 kcal/day for men aged 15-50 years and 2,039 kcal/day for women of the same age range (Swedan, 2000). The percentage of energy provided by protein was 12% and by lipids about 30%. The share of lipids in the energy intake was at the upper limit of recommendations (WHO, 2003). In the younger age groups (7-14 years) the share of macronutrients in the energy intake was similar to that of adults.

A study conducted in 1995 found similar levels of energy intake for adults. The share of energy from lipids was similar (29%) (Najah, 1995).

The study by Al-Arbah (1996) showed that cereals, oil and sweeteners provided the largest shares of energy, respectively 41, 12 and 11%.
Table 13: Food consumption data

<table>
<thead>
<tr>
<th>Survey name and date (Reference)</th>
<th>Region</th>
<th>Sample characteristics</th>
<th>Average food consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Age (years)</td>
<td>Sex</td>
</tr>
<tr>
<td>Nutritional indices in some provinces in Libya, 1999 (Swedan, 2000)</td>
<td>7 provinces</td>
<td>Individuals</td>
<td>7-10</td>
</tr>
<tr>
<td></td>
<td>7 provinces</td>
<td></td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>7 provinces</td>
<td></td>
<td>15-50</td>
</tr>
<tr>
<td></td>
<td>7 provinces</td>
<td></td>
<td>7-10</td>
</tr>
<tr>
<td></td>
<td>7 provinces</td>
<td></td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>7 provinces</td>
<td></td>
<td>15-50</td>
</tr>
<tr>
<td>Effect of nutritional and other factor on heart disease, 1995 (Najah, 1995)</td>
<td>Tajora</td>
<td>Individuals</td>
<td>25-65</td>
</tr>
<tr>
<td></td>
<td>Tajora</td>
<td></td>
<td>25-65</td>
</tr>
<tr>
<td>Food security, its limitation and achievement, 1996 (Al-Arbah, 1996)</td>
<td>National</td>
<td>n.a.</td>
<td>All</td>
</tr>
</tbody>
</table>

n.a.: not available.
II.4 Infant and young child feeding practices

Breastfeeding is a common practice in urban and rural areas, as more than 90% of children were breastfed in 1995. Main characteristics are an early initiation of breastfeeding as 73% of neonates started breastfeeding within six hours of birth and a medium duration (the mean duration of breastfeeding was 11 months). Thirty-nine percent of children were still breastfed between 12 and 15 months and 23% between 20 and 23 months of age (ALMCHS, 1995).

However, the duration of exclusive breastfeeding was short, on average 1.3 months. The practice of giving sweetened water, traditional liquids and fruit juice very early is widespread among mothers. While only 6% of children were never breastfed, 40% were mixed-fed, receiving the breast and the bottle during the first month, and this practice increased to 61% for the second and third months of age (ALMCHS, 1995).

The primary reason reported for early and sudden weaning was insufficient amount of breastmilk and the second was refusal of the breast by the child due to the early introduction of bottle-feeding and liquids other than breastmilk (Ghashut, 1991; ALMCHS, 1995).

II.5 Nutritional anthropometry

Low birth weight

In 1995, the prevalence of low birth weight (less than 2 500g) was 7% (UNICEF, End-decade Database on Low Birth Weight). The percentage of newborns that were weighed was not available but the percentage of births attended by skilled health personnel was 94% in 1995 (UNICEF, Information by country); therefore the estimated prevalence of low birth weight is probably representative at national level.

Anthropometry of preschool children

The national survey on mother and child health carried out in 1995 is the only source of information available on the nutritional status of preschool children. The survey was conducted in seven geographical regions (ALMCHS, 1995).

In 1995, 15% of children were stunted and 5% were severely stunted. Stunting appeared at birth, with a 10% prevalence among infants under 6 months. This could be related to low birth weight (which affected 7% of neonates) and to the short duration of exclusive breastfeeding. After 6 months of age, prevalence of stunting increased to reach a peak at 12-23 months (22%). Some regional differences in prevalence of stunting were observed, with higher prevalences in the provinces of Jabel El-Achdar, Jabel El-Gharbi and Gulf of Serte (ALMCHS, 1995).

There was no wasting except in the regions of Sebha and Gulf of Serte (5% for both). The prevalence of underweight was 5%, slightly higher in rural than urban areas (6% and 4% respectively) (ALMCHS, 1995).

More up-to-date data are needed to assess the current nutritional status of preschool children.
<table>
<thead>
<tr>
<th>Name/date of survey (month/year)</th>
<th>Background characteristics</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Sample size</th>
<th>Prevalence of malnutrition</th>
<th>Percentage of children with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stunting Height-for-age</td>
<td>Wasting Weight-for-height</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< -3 Z-scores < -2 Z-scores*</td>
<td>< -3 Z-scores < -2 Z-scores*</td>
</tr>
<tr>
<td>Libyan Mother and Child Health Survey 1995, PAPCHILD Survey (Jul.-Nov. 1995)¹</td>
<td>Total</td>
<td>0-4.99</td>
<td>M/F</td>
<td>4 354</td>
<td>4.5</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0-4.99 M 2 167 5.1 16.4 0.5 2.7 0.8 5.0</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-4.99 F 2 188 3.9 13.8 0.3 2.7 0.4 4.4</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>0-0.49 M/F 278 1.6 9.8 0.4 5.3 0.7 1.8</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-0.99 M/F 448 3.9 16.1 0.0 1.7 0.6 3.6</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-1.99 M/F 863 5.3 21.7 0.7 4.4 0.8 4.9</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-2.99 M/F 953 5.4 13.5 0.4 1.9 0.9 4.5</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-3.99 M/F 960 4.6 13.2 0.4 2.4 0.4 5.3</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-4.99 M/F 852 3.7 13.7 0.3 2.1 0.3 5.6</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residence</td>
<td>urban</td>
<td>0-4.99 M/F 3 029 4.1 13.9 0.3 2.5 0.5 4.2</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rural</td>
<td>0-4.99 M/F 1 325 5.3 18.1 0.7 3.3 0.8 5.9</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Region</td>
<td>Bengasi</td>
<td>0-4.99 M/F 596 2.2 11.1 0.7 2.0 0.5 3.8</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El-Zawia</td>
<td>0-4.99 M/F 396 5.2 15.0 0.0 3.7 0.7 3.5</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golf of Serte</td>
<td>0-4.99 M/F 607 3.7 18.2 0.5 4.7 0.8 6.7</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jabel El-Achdar</td>
<td>0-4.99 M/F 519 8.8 21.0 0.6 2.1 0.8 4.0</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jabel El-Gharbi</td>
<td>0-4.99 M/F 476 5.8 20.2 0.6 3.3 0.6 6.7</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sebha</td>
<td>0-4.99 M/F 296 3.5 12.5 0.8 5.4 0.8 6.7</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tripoli</td>
<td>0-4.99 M/F 1 465 3.8 12.4 0.1 1.5 0.4 3.8</td>
<td>"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Category <-2 Z-scores includes <-3 Z-scores.
¹ Data taken from WHO Global Database on Child Growth and Malnutrition.
n.a.: not available.
Anthropometry of school-age children and adolescents

Currently no data are available on anthropometry of school-age children and adolescents.

Anthropometry of adult women

In 1995, among women aged 25-65 years living in Tripoli, the mean body mass index (BMI) was 28.5 kg/m² (Najah, 1995). Two years later, in the same town, the mean BMI among women aged 30-65 years was 26.7 kg/m² (Al-Amary, 1998).

In 1999, a large-scale study was carried out in six provinces. Overall, among women 15-50 years 15% had chronic energy deficiency (BMI<18.5 kg/m²). Prevalence reached 17% in the province of Brak. Overweight and obesity affected a large proportion of the women. More than one out of five women were overweight (BMI 25.0-29.9) and 7% were obese (BMI≥30.0). The prevalence of overweight was higher in the province of Zentan (26%) while obesity was most common in the province of Musrata (12%) (Swedan, 2000).

Data taken from the SuRF Report indicate a mean BMI of 25.9 kg/m² among women aged 15 years and above, which is comparable to the estimates from the previous studies. However, there is a discrepancy in estimates prevalence of overweight and obesity. According to the SuRF Report, prevalence of overweight is 56% and that of obesity is 21%, representing 77% of women with a BMI above 25.0 kg/m² (WHO, 2005). Representativeness of the data is not documented. This discrepancy between the studies could be due to methodological differences but are more likely due to sampling.

Libya is affected by the double burden of malnutrition, with the simultaneous occurrence of chronic energy deficiency and of a very high prevalence of overweight and obesity. This nutrition transition is probably due to improving living standards, to urbanization which modifies dietary patterns and to a decrease in physical activity.

Table 15: Anthropometry of adult women

<table>
<thead>
<tr>
<th>Name/date of survey (month/year) (Reference)</th>
<th>Background characteristics</th>
<th>Age (years)</th>
<th>Sample size</th>
<th>Mean (kg/m²) (chronic energy deficiency)</th>
<th>18.5-24.9 (normal)</th>
<th>25.0-29.9 (overweight)</th>
<th>≥30.0 (obesity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td></td>
<td>Total 15-50</td>
<td>350</td>
<td>n.a.</td>
<td>14.7</td>
<td>57.1</td>
<td>21.1</td>
</tr>
<tr>
<td>Garian 15-50</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>16.3</td>
<td>51.9</td>
<td>21.6</td>
<td>10.2</td>
</tr>
<tr>
<td>Zentan 15-50</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>7.2</td>
<td>62.7</td>
<td>25.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Tripoli 15-50</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>14.5</td>
<td>56.0</td>
<td>21.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Musrata 15-50</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>16.4</td>
<td>50.4</td>
<td>21.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Brak 15-50</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>17.4</td>
<td>60.2</td>
<td>14.4</td>
<td>8.0</td>
</tr>
<tr>
<td>Albeda 15-50</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>15.7</td>
<td>54.4</td>
<td>22.0</td>
<td>7.9</td>
</tr>
</tbody>
</table>

¹ excludes pregnant women and women with a birth in the 2 preceding months.
n.a.: not available.
Anthropometry of adult men

In 1999, chronic energy deficiency (CED) affected about 18% of adult men. Important variations were observed between regions, and in Tripoli and Brak, about one out of five men had CED. Overweight and obesity affected about one quarter of men, and prevalence was particularly high in the province of Musrata (Swedan, 2000).

According to the SuRF Report, the mean BMI among men aged 15 years and above is 24.9 kg/m². As with the data on women, there is a discrepancy between the study by Swedan and the data provided by WHO. According to the WHO, in 2002, the prevalence of overweight was about 48% and the prevalence of obesity was of 11%. Thus, the overall proportion of men with a BMI of 25.0 kg/m² and more was estimated at 69% (WHO, 2005). Representativeness of the data is not documented.

Table 16: Anthropometry of adult men

<table>
<thead>
<tr>
<th>Name/date of survey (month/year) (Reference)</th>
<th>Background characteristics</th>
<th>Age (years)</th>
<th>Sample size</th>
<th>Anthropometry of adult men</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Body Mass Index (BMI) (kg/m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean (kg/m²)</td>
</tr>
<tr>
<td>Nutritional indices in some provinces in Libya (1999) (Swedan, 2000)</td>
<td></td>
<td></td>
<td></td>
<td>17.7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15-50</td>
<td>334</td>
<td>n.a.</td>
</tr>
<tr>
<td>Regions</td>
<td></td>
<td></td>
<td></td>
<td>n.a.</td>
</tr>
<tr>
<td>Garian</td>
<td></td>
<td>15-50</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Zentan</td>
<td></td>
<td>15-50</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Tripoli</td>
<td></td>
<td>15-50</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Musrata</td>
<td></td>
<td>15-50</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Brak</td>
<td></td>
<td>15-50</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Albeda</td>
<td></td>
<td>15-50</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

n.a.: not available.

II.6 Micronutrient deficiencies

Iodine deficiency disorders (IDD)

Prevalence of goitre and urinary iodine level

Data concerning iodine deficiency disorders are very limited. In 1993, a survey conducted in the north including children of all ages showed a prevalence of goitre of 23% (ICCIDD, 2002).

Iodization of salt at household level

There is legislation for iodization of salt and iodized salt became available on the markets in 1992.

Vitamin A deficiency (VAD)

Prevalence of sub-clinical and clinical vitamin A deficiency and supplementation

Currently, no data are available on the prevalence of vitamin A deficiency or on supplementation.
Iron deficiency anemia (IDA)

Prevalence of IDA

In 2002, a survey carried out among school-age (6-12 years) children of Tripoli indicated that 69% of were anemic. Anemia was defined as hemoglobin (Hb) <12g/dL (Mahfuz, 2002). In Sabretha in 1999, the prevalence of anemia (Hb<12g/dL) was 11% among 370 male children aged 6-14 years and 13% among 341 female children of the same age (Jbireal, 1999). The discrepancy between the two studies is difficult to interpret, but both surveys were local and differences in methodology cannot be ruled out.

A study was carried out in 1999 among adults in 7 provinces, including 350 women and 334 men. The prevalence of IDA among women (Hb<12g/dL) aged 15-50 years was 18%. Among women aged 19-24 years, prevalence reached 20%. Among men, prevalence was 9% (Hb<13 g/dL) (Swedan, 2000).

Among the causes of IDA, the high consumption of strong tea and the practice of serving tea to children at a young age could reduce the bioavailability of iron and thus expose large numbers of children and adults to iron deficiency (Swedan, 2000).

Interventions to combat IDA

Currently no data are available on interventions to combat iron deficiency anemia.

II.7 Policies and programmes aiming to improve nutrition and food security

Libya has established a nutritional policy aiming to provide for the basic food needs of people all over the country, by lowering food prices through subsidizing major food groups that supply energy such as cereals, vegetable oils and sugar. Since cereals supply 45% of the DES, strategies for cereal fortification with iron should be considered. Since more than one quarter of the adult population in some provinces is overweight or obese, the relevance of subsidizing energy dense but micronutrient poor foods such as sugar and vegetable oil should be questioned.

It is important to consolidate nutrition education, to enhance nutrition awareness in order to improve the nutritional status of the population. It is also of vital importance to carry out a national nutrition survey and to establish a nutrition information system.
Reference list

Al-Amary, A. 1998. *Life style and obesity in Alhadba Al Khadra (Tripoli).* Master Degree. University of Al-Fateh, Faculty of Agriculture. Libya.

