LA DISPERSION DE LAS PLUMAS Y EL MODELADO DE LA CALIDAD DEL AIRE

Elevación de la pluma


Los gases emitidos por las chimeneas muchas veces son impulsados por abanicos. A medida que los gases de escape turbulentos son emitidos por la pluma, se mezclan con el aire del ambiente. Esta mezcla del aire ambiental en la pluma se denomina arrastre. Durante el arrastre en el aire, la pluma aumenta su diámetro mientras viaja a sotavento. Al entrar en la atmósfera, estos gases tienen un momentum. Muchas veces se calientan y se vuelven más cálidos que el aire externo. En estos casos, los gases emitidos son menos densos que el aire exterior y, por lo tanto, flotantes. La combinación del momentum y la flotabilidad de los gases hace que estos se eleven. Este fenómeno, conocido como elevación de la pluma, permite que los contaminantes emitidos al aire en esta corriente de gas se eleven a una altura mayor en la atmósfera. Al estar en una capa atmosférica más alta y más alejada del suelo, la pluma experimentará una mayor dispersión antes de llegar a este.

La altura final de la pluma, conocida como altura efectiva de chimenea (H), es la suma de la altura física de la chimenea (hs) y la elevación de la pluma (). En realidad, la elevación de la pluma se estima a partir de la distancia existente hasta la línea central imaginaria de la pluma y no hasta el borde superior o inferior de esta (figura 6-1). La elevación de la pluma depende de las características físicas de la chimenea y del efluente (gas de chimenea). La diferencia de temperatura entre el gas de la chimenea (Ts) y el aire ambiental (Ta) determina la densidad de la pluma, que influye en su elevación. Además, la velocidad de los gases de la chimenea, que es una función del diámetro de la chimenea y de la tasa volumétrica del flujo de los gases de escape, determina el momentum de la pluma.

Figura 6-1. Elevación de la pluma



Momentum y flotabilidad

La condición de la atmósfera, incluidos los vientos y el perfil de la temperatura a lo largo del recorrido de la pluma, determinará en gran medida la elevación de la pluma. Dos características de esta influyen en su elevación: el momentum y la flotabilidad. La velocidad de salida de los gases de escape emitidos por la chimenea contribuyen con la elevación de la pluma en la atmósfera. Este momentum conduce el efluente hacia el exterior de la chimenea a un punto en el que las condiciones atmosféricas empiezan a afectar a la pluma. Una vez emitida, la velocidad inicial de la pluma disminuye rápidamente debido al arrastre producido cuando adquiere un momentum horizontal. Este fenómeno hace que la pluma se incline. A mayor velocidad del viento, más horizontal será el momentum que adquirirá la pluma. Por lo general, dicha velocidad aumenta con la distancia sobre la superficie de la Tierra. A medida que la pluma continúa elevándose, los vientos más fuertes hacen que se incline aún más. Este proceso persiste hasta que la pluma parece horizontal al suelo. El punto donde la pluma parece llana puede ser una distancia considerable de la chimenea a sotavento. La velocidad del viento es importante para impulsar la pluma. Mientras más fuerte, más rápido será el serpenteo de la pluma.

La elevación de la pluma causada por su flotabilidad es una función de la diferencia de temperatura entre la pluma y la atmósfera circundante. En una atmósfera inestable, la flotabilidad de la pluma aumenta a medida que se eleva, lo cual hace que se incremente la altura final de la pluma. En una atmósfera estable, la flotabilidad de la pluma disminuye a medida que se eleva. Por último, en una atmósfera neutral, permanece constante.

La pluma pierde flotabilidad a través del mismo mecanismo que la hace serpentear, el viento. Como se muestra en la figura 6-2, la mezcla dentro de la pluma arrastra el aire atmosférico hacia su interior. A mayor velocidad del viento, más rápida será esta mezcla. El arrastre del aire ambiental hacia la pluma por acción del viento, le "quita" flotabilidad muy rápidamente, de modo que durante los días con mucho viento la pluma no se eleva muy alto sobre la chimenea.

Figura 6-2. Influencia de la velocidad del viento en el arrastre.



Efectos de la fuente en la elevación de la pluma

Debido a la configuración de la chimenea o a los edificios adyacentes, es posible que la pluma no se eleve libremente en la atmósfera. Algunos efectos aerodinámicos causados por el modo en el que se mueve el viento alrededor de los edificios adyacentes y de la chimenea pueden impulsar a la pluma hacia el suelo en lugar de permitir que se eleve en la atmósfera.

El flujo descendente de la chimenea puede producirse cuando la razón entre la velocidad de salida de la chimenea y la del viento es pequeña. En este caso, la presión baja en la estela de la chimenea puede hacer que la pluma descienda detrás de la chimenea. Cuando esto sucede, la dispersión de los contaminantes disminuye, lo que puede determinar concentraciones elevadas de contaminantes inmediatamente a sotavento de la fuente.

A medida que el aire se mueve sobre y alrededor de los edificios y otras estructuras, se forman olas turbulentas. Según la altura de descarga de una pluma (altura de la chimenea), es probable que esta sea arrastrada hacia abajo en esta área de la estela. Esto se conoce como flujo descendente aerodinámico o entre edificios de la pluma y puede conducir a concentraciones elevadas de contaminantes inmediatamente a sotavento de la fuente. La figura 6-3 ilustra estos efectos.

Figura 6-3. Dos ejemplos de flujo descendente



Fórmulas

La elevación de las plumas ha sido tema de estudio durante muchos años. Las fórmulas más usadas son las desarrolladas por Gary A. Briggs. La ecuación 6-1 incluye una de estas, la que se aplica a las plumas dominadas por la flotabilidad. Las fórmulas de la elevación de la pluma se usan en plumas con temperaturas mayores que la del aire ambiental. La fórmula de Briggs para la elevación de la pluma es la siguiente:

Ec. 6-1


Donde:     =  Elevación de la pluma (sobre la chimenea)
F = Flujo de flotabilidad (véase a continuación)
= Velocidad promedio del viento
x = Distancia a sotavento de la chimenea/fuente
g = Aceleración debido a la gravedad (9,8 m/s2)
V = Tasa volumétrica del flujo del gas de la chimenea
Ts = Temperatura del gas de la chimenea
Ta = Temperatura del aire ambiental


Ec. 6-2

Como se dijo anteriormente, las fórmulas de elevación de la pluma sirven para determinar la línea central imaginaria de esta. La línea central está donde se producen las mayores concentraciones de contaminantes. Existen varias técnicas para calcular las concentraciones de contaminantes lejos de la línea central.

En la siguiente sección se tratan los principios que se deben considerar para obtener estimados cuantificables de dispersión.