DIAGNÓSTICO SOBRE LA SITUACIÓN DE LOS SISTEMAS DE VIGILANCIA Y CONTROL DE LA CALIDAD DE AGUA PARA CONSUMO HUMANO

Lima, 2004
Presente documento fue elaborado por el consultor ingeniero César García Zárate para la Unidad de Apoyo Técnico en Saneamiento Básico Rural del Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente.
Contenido

1. Resumen ...4
2. Antecedentes ..5
3. Introducción ...6
 3.1 Breve descripción geográfica del país6
 3.2 Definición de los sistemas de vigilancia sanitaria y control de la calidad del agua para consumo humano9
4. Sistemas de vigilancia y control de la calidad del agua en el Perú10
 4.1 El marco legal regulatorio ..10
 4.1.1 Instrumentos jurídicos de la calidad del agua distribuida11
 4.1.2 Instrumentos jurídicos de la calidad del agua cruda11
 4.1.3 Competencia y autoridad sectorial13
 4.2 Población y cobertura de los servicios de agua potable14
 4.2.1 Distribución de la población en el país14
 4.2.2 Población por centros poblados14
 4.2.3 Cobertura general ..15
 4.3 Vigilancia y control de la calidad del agua para consumo humano ..17
 4.3.1 Programa de Vigilancia ..17
 4.3.2 Programa de control de calidad23
 4.4 Calidad del agua ..28
 4.4.1 Bacteriológica y físicoquímico28
 4.4.2 Estado de la desinfección del agua34
 4.5 Laboratorios existentes ...35
 4.6 Sistema de información ...36
 4.6.1 Manejo de datos ..36
 4.6.2 Biblioteca virtual ..37
 4.7 Capacitación ..37
5. Información epidemiológica ...39
 5.1 Morbilidad y mortalidad ..39
 5.2 Tasa de incidencia de EDAS ..42
 5.3 Consultas externas realizadas43
6. Conclusiones ...44
7. Recomendaciones ...44
8. Bibliografía ...45

Lista de cuadros

Cuadro 1. Disponibilidad de agua superficial y subterránea7
Cuadro 2. El agua y la ocupación del territorio ...8
Cuadro 3. Instrumentos jurídicos que regulan las actividades de vigilancia y control de la calidad del agua para consumo humano10
Cuadro 4. Análisis de la efectividad de los instrumentos jurídicos que regulan las actividades de vigilancia y control de la calidad del agua para consumo humano12
Cuadro 5. Población por centros poblados y porcentaje de población servida con el servicio de agua y saneamiento ...15
Cuadro 6. Cobertura según tipo de servicio de agua potable (porcentaje)16
Cuadro 7. Encuestas nacionales de hogares – Años 1997 y 200217
Cuadro 8. Resumen ...18
Cuadro 9. Población servida con agua potable ..23
Cuadro 10. Muestras bacteriológicas del agua tomadas por las EPS. Años 2000-2002 ...30
Cuadro 13. Supervisión de la calidad bacteriológica del agua realizada por SUNASS. Años 1995 y 2002 ...31
Cuadro 15. Control físicoquímico de la calidad del agua en las EPS. Años 2000-2002 ...32
Cuadro 17. Estado de la desinfección en el agua distribuida reportado por las EPS desde 1998 hasta 2002 ..35
Cuadro 18. Resumen del inventario de equipos de laboratorio para análisis de agua ...36
Cuadro 19. Universidades por regiones según carreras profesionales38
Cuadro 20. Morbilidad y mortalidad de niños causados por EDAS40
Cuadro 21. Número de casos de EDAs atendidos por el MINSA en el período de 1996 a 2002 ...41
Cuadro 22. Principales causas de consulta externa de establecimientos del MINSA, Perú 1997 ..42
Lista de Abreviaturas

OMS Organización Mundial de la Salud
OPS Organización Panamericana de la Salud
CEPIS Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente
EPA Agencia de Protección Ambiental
NSF Fundación Nacional de Saneamiento, Centro Colaborador de la OMS
MINSA Ministerio de Salud
DIGESA Dirección General de Salud Ambiental
DISA Dirección de Salud
DESA Dirección Ejecutiva de Salud Ambiental
DESAB Dirección Ejecutiva de Saneamiento Básico
UTES Unidad Territorial de Salud
UBAS Unidad Básica de Salud
ZONADIS Zonas de Desarrollo Integral de Salud
SBS Servicio Básico de Salud
OGE Oficina General de Epidemiología
SUNASS Superintendencia Nacional de Servicios de Saneamiento
EPS Entidad Prestadora de Servicio de Saneamiento
LMP Límite Máximo Permisible
AWWA American Water Works Association (Asociación Estadounidense de Obras Hidráulicas)
SENAPA Servicio Nacional de Abastecimiento de Agua Potable y Alcantarillado
JICA Agencia de Cooperación Internacional del Japón
GTZ Cooperación Técnica de la República Federal de Alemania
BID Banco Interamericano de Desarrollo
Diagnóstico sobre la situación de los sistemas de vigilancia y control de la calidad del agua para consumo humano

1. Resumen

- El marco legal que regula las actividades de vigilancia y control de la calidad del agua, está contenida en el “Reglamento de los requisitos oficiales físicos, químicos y bacteriológicos de aguas de bebida para ser consideradas potables” del año 1946, la cual es de poca efectividad y rigurosidad.

- Un reporte histórico muestra que el Perú en las décadas de 1950 y 1960 tuvieron programas activos de vigilancia y control de la calidad del agua para consumo humano, los mismos que se descontinuaron en las décadas de 1970 y 1980 y en las siguientes dos décadas, las instituciones responsables de llevar a cabo dichos programas han realizado algún tipo de esfuerzo para retomarlas.

- La población proyectada al año 2002, es de 26.7 millones de los cuales el 72% es urbana y el 28% rural. La cobertura de agua por conexiones domiciliarias y facilidades cercanas es del 79.2% y está a cargo de las Empresas Prestadoras de Servicio (EPS), empresas municipales, juntas administradoras, organizaciones comunales, etc. Aproximadamente, existen cerca de 5.5 millones de habitantes que no tienen acceso al servicio de agua y sólo 8.4 millones de habitantes reciben agua segura.

- Las EDAS, con una tasa promedio de 230.34 por 1.000 habitantes constituyen en la actualidad una de las causas principales de morbilidad y mortalidad en la niñez, especialmente en los niños menores de cinco años.

- Existen más de 84 mil centros poblados, de estos 66 mil son denominados como “dispersos” con problemas muy críticos de los servicios y 18 mil pueden ser considerados como concentrados y susceptibles de ser ejecutados programas efectivos de vigilancia y control.

- Sólo el 41% de la población del país consume agua segura, siendo el más afectado el ámbito rural con sólo el 6,5% que consume agua segura.

- Con relación al programa de vigilancia de la calidad del agua para consumo humano, la DIGESA, institución responsable del Ministerio de Salud para esta labor, no cuenta con un programa formal, limitándose a ejecutar principalmente evaluaciones aisladas del contenido de cloro residual, turbiedad, Coliformes Termotolerantes y en algunos casos excepcionales, la determinación de parámetros complementarios a través de las 34 DESAS existentes en el país las que reportan sus datos al nivel central. Esta labor se asemeja en gran medida a los programas de control de calidad por estar obviando la parte investigativa que es propia de los programas de vigilancia y destinado a evaluar la inocuidad del agua de bebida a través de la correlación con las enfermedades vinculadas con la calidad del agua para consumo humano.
Respecto al control de la calidad del agua, se tiene que solamente las empresas fiscalizadas por la SUNASS lo han implementado, encontrándose que tanto el número de parámetros como la frecuencia de muestreo no cumple con lo dispuesto por el Reglamento del año 1946. Los demás sistemas de abastecimiento tanto municipales como juntas administradoras y organizaciones comunales, no realizan ningún tipo de determinación analítica estando a la espera que el Ministerio de Salud, a través de la DIGESA, la ejecute dentro de su programa de evaluación para conocer la calidad del agua que suministran.

La SUNASS, en cumplimiento de sus responsabilidades, fiscaliza la calidad del agua que suministran las 45 EPS reconocidas en el país. Al año 2002, la adecuada desinfección del agua alcanzó una efectividad del 98%, habiéndose presentado un 1,48% de las muestras contaminadas con Coliformes Totales y el 0,74% con Coliformes Termotolerantes (fecales). Respecto al control físicoquímico del agua, se ha determinado que existen problemas respecto al control de parámetros, como son: turbiedad, nitratos, hierro, manganeso y aluminio, y a muy pequeña escala y focalizada en algunos sistemas de abastecimiento de agua, se ha determinado la presencia de arsénico, plomo, cadmio y mercurio.

En conclusión, las acciones de los sistemas de vigilancia y control de la calidad del agua realizadas hasta aquí, no han sido efectivas como para que contribuya a disminuir los casos de las enfermedades de origen hídrico ya que la población en riesgo por la falta de acceso al agua o a la transmisión de enfermedades de origen hídrico, es crítico.

2. **Antecedentes**

En el año 1996, la Reunión Cumbre de Jefes de Estados Americanos, que tuvo lugar en Santa Cruz de la Sierra, trató el tema de la calidad del agua para consumo humano y emitió la "Iniciativa 47", en donde se instaba a los países a establecer programas específicos, leyes y políticas para proteger la salud pública, a través del aseguramiento de un agua de bebida libre de microorganismos, metales pesados y contaminantes químicos.

A partir de dicha "Iniciativa", en 1998, en la reunión realizada en la Organización Panamericana de la Salud (OPS) en Washington DC, el "Grupo de Coordinación de la Cooperación Técnica para el Mejoramiento de la Calidad y el Acceso al Agua Potable" constituido por organismos nacionales, bilaterales e internacionales, estableció la necesidad de elaborar un plan de acción que abordara temas regionales y nacionales relativos a la calidad y el acceso al agua potable.

El referido plan presenta cuatro líneas específicas de acción, siendo una de ellas el **Programa de Vigilancia y Control de la Calidad del Agua**, cuyo objetivo, es desarrollar la capacidad de laboratorios de la región y fortalecer programas nacionales de control y vigilancia de la calidad del agua.
Posteriormente, en el año 2000, el Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (CEPIS), en el marco del acuerdo cooperativo entre la Organización Panamericana de la Salud/Organización Mundial de la Salud (OPS/OMS) y la Agencia de Protección Ambiental de Norte América (EPA) de los Estados Unidos, publicó la “Guía para la Vigilancia y Control de la Calidad del Agua para Consumo Humano”, documento importante que explica la manera de planificar programas de vigilancia y control de la calidad del agua, define los criterios a tener en cuenta para concretar el nivel de intervención, indica los alcances que debe tener la legislación, reglamentación, políticas y gestión básica, e identifica las principales labores de apoyo para la planificación de futuras intervenciones de vigilancia y control.

En el presente año, sobre la base de un acuerdo de cooperación entre la Dirección General de Salud Ambiental (DIGESA) del Ministerio de Salud (MINSA) y el CEPIS de la OPS/OMS, consideraron necesario realizar un Diagnóstico sobre la Vigilancia y Control de la Calidad del Agua para Consumo Humano del Perú con la finalidad de conocer la situación actual de los proyectos de vigilancia y control de la calidad del agua; para tal fin se preparó un documento sobre los lineamientos generales para la elaboración del mencionado diagnóstico.

El diagnóstico trata fundamentalmente cuatro aspectos: i) marco legal regulatorio de los programas de vigilancia y control de la calidad del agua; ii) estadística sobre cobertura poblacional, de los servicios de agua potable y de la salud ambiental; iii) calidad del agua con énfasis en el aspecto bacteriológico y de desinfección; y iv) análisis crítico de los programas de vigilancia y control de la calidad del agua.

3. Introducción

3.1 Breve descripción geográfica del País

El Perú se encuentra en la parte central y occidental de América del Sur y tiene una extensión territorial de 1’285,216 Km² divididos, según la clasificación del doctor Javier Pulgar Vidal en ocho regiones naturales: a) Chala o Costa, b) Yunga o quebrada marítima y fluvial, c) Quechua o templada, d) Suni o Jalca, e) Puna o Altiplano, f) Janca o Cordillera, g) Rupa Rupa o Selva Alta y h) Omagua o Selva Baja, que varía drásticamente, en cuanto al clima y condiciones topográficas se refiere.

La región Chala o Costa, se eleva desde el nivel del mar hasta los 500 m.s.n.m. y su aridez se debe a la corriente fría del Humboldt o corriente peruana y que es responsable del clima frío y húmedo de la región, contrario a lo que se esperaría por su ubicación geográfica. Sin embargo, cada dos o siete años, como consecuencia de la corriente caliente del niño, se presentan lluvias torrenciales y muchas veces catastróficas, tal como ocurrió en la década pasada que dejaron cuantiosas pérdidas económicas.

Las regiones Yunga o quebrada marítima (500 y 2500 m.s.n.m.), Quechua o templada (2.500 y 3.500 m.s.n.m.), Suni o Jalca (3.500 a 4.000 m.s.n.m.), Puna o Altiplano (4.100 y 4.800 m.s.n.m.) y Janca o Cordillera (más de 4.800 m.s.n.m.) está conformada básicamente por cadenas montañosas, con nevados que alcanzan los 6.768 metros sobre el
nivel del mar. El clima en estas regiones, es seco, encontrándose desde temperaturas templadas hasta temperaturas sumamente bajas, conforme uno vaya entrando en la Cordillera de los Andes. En estas regiones, llueve desde octubre hasta marzo (6 meses), con mayor intensidad en los tres últimos meses.

Hacia el lado oriental de la cordillera y abarcando más de la mitad del país se encuentran las regiones Yunga o Quebrada Fluvial (400 y 2.500 m.s.n.m.), Rupa Rupa o Selva Alta (400 y 1.000 m.s.n.m.) y Omagua o Selva Baja (80 a 400 m.s.n.m.), con clima tropical y húmedo. La temporada de lluvias va de octubre a abril.

La disponibilidad del agua en el país está distribuida en el territorio de forma desigual. La Cordillera de los Andes que atraviesa longitudinalmente el país lo divide geográficamente en tres vertientes: i) la del Pacífico, cuyos ríos nacen de las estribaciones de la Cordillera de los Andes y que lo recorren de Este a Oeste hasta desembocar al Océano Pacífico; ii) la del Atlántico, conformada por todos aquellos ríos que dan nacimiento al Amazonas y cuyo límite de entrega de sus aguas al Brasil está en Leticia, al oriente del Departamento de Iquitos; y iii) la Vertiente del Titicaca, constituida por los ríos que en su mayoría circulan radialmente hacia el Lago del mismo nombre.

Según el estudio básico situacional de los recursos hídricos de la Dirección General de Aguas y Suelos del Ministerio de Agricultura, existen en el territorio nacional alrededor de 106 cuencas hidrográficas, que producen más de dos millones de m3 de agua por año. En la región Chala o costa, que es la franja árida desarrollada paralelamente al Océano Pacífico y donde se asienta más del 50% de la población, es la zona por donde discurre la menor cantidad de agua, con sólo 2.885 m3 anuales disponibles por habitante y que está muy por debajo del promedio mundial de 8.500 m3 por habitante. En la selva alta y baja de abundantes recursos (Atlántico), tiene un estimado de disponibilidad de 800.000 m3 por habitante; sin embargo, solo se utiliza el 0,75% del recurso disponible para diversos fines. Un resumen de la disponibilidad de agua superficial y subterránea total a nivel nacional se presenta en el cuadro 1.

Cuadro 1. Disponibilidad de agua superficial y subterránea

<table>
<thead>
<tr>
<th>Vertiente</th>
<th>Aguas superficiales</th>
<th>Aguas subterráneas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Mill. m3)</td>
<td>(Mill. m3)</td>
<td>(Mill. m3)</td>
</tr>
<tr>
<td>Pacífico</td>
<td>34,624</td>
<td>2,739</td>
<td>37,364</td>
</tr>
<tr>
<td>Atlántico</td>
<td>1’998,752</td>
<td>Sin datos</td>
<td>1’998,752</td>
</tr>
<tr>
<td>Titicaca</td>
<td>10,172</td>
<td>Sin datos</td>
<td>10,172</td>
</tr>
<tr>
<td>Total</td>
<td>2’043,548</td>
<td>2,739</td>
<td>2’046,208</td>
</tr>
</tbody>
</table>

Fuente: Estudio Básico Situacional de los Recursos Hídricos del Perú-Dirección General de Aguas y Suelos – Junio de 1992
Una característica importante de los ríos en el país, es el régimen temporal de los mismos considerando la irregularidad de sus caudales, corto período de abundancia o avenida comprendida entre tres a cinco meses y prolongado el período de estiaje de siete a nueve meses, el cual no es una situación favorable a las necesidades económicas del país.

De otra parte, la disponibilidad y el uso de las agua en el país es errática en el espacio y en el tiempo. En la región Chala o Costa en donde el área es de solamente el 11% del territorio nacional y se asienta la mayor proporción de la población del país, se utiliza el 82% del recurso agua; en contraste, en las regiones de la selva alta y selva baja que abarca el 63% del territorio nacional y alberga al 11% de la población, solamente se aprovecha el 2% del recurso hídrico. En el cuadro 2 se presenta el uso del agua y su relación con la ocupación territorial.

Cuadro 2. El agua y la ocupación del territorio

<table>
<thead>
<tr>
<th>REGIÓN NATURAL</th>
<th>ÁREA (%)</th>
<th>POBLACIONAL (%)</th>
<th>DISPONIBILIDAD DEL AGUA (%)</th>
<th>USO DEL AGUA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chala o costa</td>
<td>11</td>
<td>52</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>Yunga marítima y fluvial, Quechua, Suni, Puna y Janco</td>
<td>26</td>
<td>37</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Selva alta y baja</td>
<td>63</td>
<td>11</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL NACIONAL</td>
<td>1,285215 (Km²)</td>
<td>21.26x10E6 (habitantes)</td>
<td>2,043.53x10E6 (m³)</td>
<td>15.29x10E6 (m³)</td>
</tr>
</tbody>
</table>

En agricultura, el balance del agua resultado de la comparación entre el agua precipitada y la evapotranspirada; presenta un marcado déficit en la región costera debido a la poca presencia de lluvias, siendo el déficit de 1,414 mm. Mientras tanto, en la región serrana la diferencia es menor pero en el mismo sentido, presentando un déficit de 615 mm. En el oriente, el balance resulta ser positivo, con 1,623 mm. El balance promedio del país asciende a los 1,457 mm como superávit, siendo la precipitación promedio de 2,028 mm y la evaporación global potencial de 571 mm².

En lo concerniente a la calidad de los recursos hídricos, cabe señalar que como consecuencia del desarrollo industrial del país, gran parte de ellas se han visto afectadas por las diferentes descargas que se vierten y que perjudican de una u otra manera su aprovechamiento en agricultura, piscicultura, abastecimiento de agua y hasta industrial, conduciendo a una baja productividad de los campos de cultivos o a procesos de tratamiento costosos para acondicionar el agua a los usos previstos, en vista que cada uno de ellos poseen exigencias particulares de calidad. Así por ejemplo, aguas con alto contenido de sales resultan no aptas para agricultura; asimismo, las impurezas químicas y biológicas presentes en las aguas destinadas al consumo humano directo obligan a su tratamiento.
Las mayores descargas, que contaminan las fuentes de agua, son las aguas residuales domésticas con 617 millones de metros cúbicos anuales y las mineras con 244 millones de metros cúbicos anuales.

Los cursos y cuerpos de agua que están más afectados por las descargas domésticas e industriales en el Perú, según el referido estudio básico situacional de los recursos hídricos, son:

- Ríos: Mantaro, Rímac, Camaná, Mantaro, Huatanay, Chili, Majes, Ocoña, Locumba (Valle de Ite), Palca, Chotano, Moche y Huallaga.
- Lagunas: Junín, Huarococha, Morococha y Huascacocha.

3.2 Definición de los sistemas de vigilancia sanitaria y control de la calidad del agua para consumo humano

Según la “Guía para la Vigilancia y Control de la Calidad del Agua para Consumo Humano” de la OPS/OMS, la vigilancia sanitaria es el conjunto de acciones adoptadas por la autoridad competente para evaluar el riesgo que representa a la salud pública la calidad del agua suministrada por los sistemas públicos y privados de abastecimiento de agua, así como para valorar el grado de cumplimiento de la legislación vinculada con la calidad del agua.

En teoría, la vigilancia sanitaria tiene dos grandes componentes:

a) La correlación de la calidad física, química y microbiológica del agua con las enfermedades de origen hídrico a fin de determinar el impacto en la salud; y
b) El examen permanente y sistemático de la información sobre calidad del agua para confirmar que la fuente, el tratamiento y la distribución respondan a objetivos y reglamentación establecidos.

De lo anterior se deduce que la vigilancia sanitaria es una actividad de investigación, realizada generalmente por la autoridad competente de salud pública, dirigida a identificar y evaluar los factores de riesgo, asociados a los sistemas de abastecimiento de agua para consumo humano que puedan significar peligro para la salud de la población. También es una actividad tanto preventiva como correctiva para asegurar la confiabilidad y seguridad del agua para consumo humano.

El control de la calidad, según la misma guía, es el conjunto de actividades ejercidas en forma continua por el abastecedor con el objetivo de verificar que la calidad del agua suministrada a la población cumpla con la legislación.

La definición de control de la calidad, implica que el abastecedor de agua es responsable de la calidad de agua que produce y distribuye, y de la seguridad del sistema que opera. Ello es posible a través de una combinación de mantenimiento preventivo y de buenas prácticas operativas, apoyado por la evaluación continua de la calidad de las fuentes, de los procesos de tratamiento y del sistema de distribución, conjuntamente con las inspecciones sanitarias, lo que asegura la buena calidad del agua y la ausencia de su recontaminación en el sistema de distribución.
En general, es responsabilidad de las autoridades encargadas del abastecimiento local del agua, garantizar que el agua que se suministra tenga la calidad establecida por las normas. No obstante, un organismo independiente (nacional, estatal, provincial o local) puede cumplir mejor la labor de vigilancia sanitaria. Si bien ambas funciones se complementan, la experiencia indica que se cumplen mejor cuando las realizan organismos independientes entre sí, a causa de los conflictos de prioridades que surge cuando combinan ambas funciones.

4. **Sistemas de vigilancia y control de la calidad del agua en el Perú**

4.1 **Marco legal regulatorio**

4.1.1 **Instrumentos jurídicos de la calidad del agua distribuida**

Las disposiciones legales vigentes con relación a las actividades de vigilancia y control de la calidad del agua de consumo humano, se encuentran los instrumentos jurídicos que se muestran en el cuadro 3.

Cuadro 3. Instrumentos jurídicos que regulan las actividades de vigilancia y control de la calidad del agua para consumo humano

<table>
<thead>
<tr>
<th>Instrumento Jurídico</th>
<th>Decreto Ley o Resolución</th>
<th>Fecha promulgación/ publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumento N° 1: Nacional</td>
<td>Reglamento de los Requisitos Oficiales Físicos, Químicos y Bacteriológicos de Aguas de Bebida para ser Consideradas Potables</td>
<td>Resolución Suprema s/n 17.12.1946</td>
</tr>
<tr>
<td>Instrumento N° 2: Nacional</td>
<td>Norma Técnica Nacional N° 214.003 sobre los requisitos físicos químicos, organolépticos y microbiológicos que debe cumplir el agua para ser considerada potable.</td>
<td>Resolución Directoral N° 339-87-ITINTEC-DG 22.06.1987</td>
</tr>
<tr>
<td>Instrumento N° 3: EPS</td>
<td>Directiva sobre Control de la Calidad del Agua Potable</td>
<td>Resolución de Superintendencia N° 1121-99-SUNASS 03.12.1999</td>
</tr>
<tr>
<td>Instrumento N° 4: EPS</td>
<td>Directiva sobre Medidas para Evitar la Propagación del Cólera y Otras Enfermedades.</td>
<td>Resolución de Superintendencia N° 180-97-SUNASS 02.05.1997/06.05.1997</td>
</tr>
<tr>
<td>Instrumento N° 5: EPS</td>
<td>La Directiva sobre Desinfección del Agua de Consumo Humano.</td>
<td>Resolución de Superintendencia N° 190-97-SUNASS. 12.05.1997/14.05.1997</td>
</tr>
</tbody>
</table>

Para el análisis de la efectividad de la legislación, se realizará en términos de rigurosidad, aplicabilidad y efectividad4 y para tales fines se entiende por:
• Rigurosidad: La severidad con que se han establecido prohibiciones, faltas y sanciones. Para su evaluación se utilizan como criterios de severidad: alta, media y baja.

• Aplicabilidad: La facilidad para cumplir con todos los elementos reguladores o normadores del instrumento jurídico. Para su evaluación se utilizan como criterios de aplicabilidad: mucha, media y poca.

• Efectividad: La capacidad para cumplir con el objetivo que se persigue lograr a través del instrumento normativo. Para su evaluación se utilizan como criterios de efectividad: alta, media y baja.

Los objetivos tanto del Reglamento de los Requisitos Oficiales Físicos, Químicos y Bacteriológicos de Aguas de Bebida para ser Consideradas Potables como de la Norma Técnica Nacional, son la de proteger la salud pública mediante el establecimiento de niveles adecuados de calidad para impedir que el agua de bebida, esencial para la vida, signifique peligro inminente para ésta. Sin embargo, estas normas no precisan los organismos operadores responsables de la vigilancia y control de la calidad del agua, tampoco las infracciones y sanciones, por lo que se les califica de rigurosidad “baja”. Asimismo, para la implementación especialmente de las características físicoquímicas de carácter “obligatorio” se requieren de recursos económicos, humanos y materiales, que son escasos especialmente en las empresas menores, municipales, administraciones, etc., siendo por lo tanto de aplicabilidad “media” y de “baja” efectividad (Instrumentos Jurídicos N° 3, 4 y 5).

Por su parte, los objetivos de las directivas de la SUNASS, son las de regular las actividades de control de la calidad del agua de las EPS y al efecto establece las obligaciones que ellas deben cumplir con relación al control de la calidad que producen y distribuyen a sus usuarios, así como las características de la información que deben reportar.

Asimismo, las Directivas no precisan las infracciones y sanciones, por lo que se le considera de una rigurosidad “baja”. Sin embargo, en cuanto a su aplicabilidad y efectividad, el Instrumento Jurídico N° 5, ha obtenido mejores resultados, calificándolos de “mucha” su aplicabilidad” y de “alta” su efectividad. Ver cuadro 4.

4.1.2 Instrumentos jurídicos de la calidad del agua cruda

Con relación a las normas específicas vinculadas con la calidad del agua cruda, se dispone del Reglamento de los Títulos I, II y III del Decreto Ley N° 17752, Ley General de Aguas, aprobado por Decreto Supremo N° 261-69-AP (promulgado el 12.12.69) y su modificatoria, aprobado con el Decreto Supremo Nº 007-83-SA, Reglamento de la Ley General de Aguas, Capítulo IV de la Clasificación de los Cursos de Agua y de las Zonas Costeras del País, mediante el cual establece expresamente los niveles y/o límites bacteriológicos, de demanda bioquímica de oxígeno, sustancias potencialmente peligrosas y potencialmente perjudiciales, para las aguas de abastecimiento doméstico.
Cuadro 4. Análisis de la efectividad de los instrumentos jurídicos que regulan las actividades de vigilancia y control de la calidad del agua para consumo humano

<table>
<thead>
<tr>
<th>Instrumento Jurídico</th>
<th>Rigurosidad</th>
<th>Aplicabilidad</th>
<th>Efectividad</th>
</tr>
</thead>
</table>
| **Instrumento Nº 1: Nacional**
Reglamento de los Requisitos Oficiales Físicos, Químicos y Bacteriológicos de Aguas de Bebida para ser Consideradas Potables. | Baja | Media | Baja |
| **Instrumento Nº 2: Nacional**
Norma Técnica Nacional Nº 214.003 sobre los requisitos físicos químicos, organolépticos y microbiológicos que debe cumplir el agua para ser considerada potable. | Baja | Poca | Baja |
| **Instrumento Nº 3: EPS**
Directiva sobre Control de la Calidad el Agua Potable. | Baja | Media | Media |
| **Instrumento Nº 4: EPS**
Directiva sobre medidas para evitar la propagación del cólera y otras enfermedades. | Baja | Poca | Baja |
| **Instrumento Nº 5: EPS**
La Directiva sobre desinfección del agua de consumo humano, aprobado mediante. | Baja | Mucha | Alta |

Dificultad de aplicación por carencia de recursos en empresas menores, municipales, administraciones, etc.
4.1.3 Competencia y autoridad sectorial

En cuanto a la competencia y autoridad sectorial, el artículo 123 de la Ley General de Salud, Ley Nº 26842 (20.07.1997), establece que el Ministerio de Salud, es la máxima autoridad normativa en materia de salud, por lo tanto es el responsable de la vigilancia de la calidad del agua para consumo humano y que esta tarea está a cargo de la Dirección General de Salud Ambiental (DIGESA). En la estructura organizativa, la DIGESA cuenta con el Departamento de Calidad del Agua, la misma que está encargada de planificar a nivel nacional las actividades de vigilancia, tanto en el ámbito urbano como rural.

También la Ley General de Servicios de Saneamiento, Ley Nº 26338 (publicado el 24.07.1994), señala que el Ministerio de Salud es el responsable de dictar las normas de calidad sanitaria del agua y por ende de modificar o ampliar los requisitos oficiales físicos, químicos y bacteriológicos del agua de consumo humano.

Asimismo, según el Reglamento de la Ley General de Servicios de Saneamiento, aprobado mediante Decreto Supremo Nº 24-94-PRES (publicado el 28.08.1995), señala entre otros aspectos, que los niveles de calidad de agua potable serán establecidos por la SUNASS para cada entidad prestadora; asimismo indica que le corresponde a la SUNASS, entre otras, supervisar la calidad de la prestación de los servicios de saneamiento y sancionar a las entidades prestadoras que abastecen a la población con agua que no alcance los niveles de calidad establecidos.

Por otro lado, el artículo 49 del Reglamento de la Superintendencia Nacional de Servicios de Saneamiento aprobado mediante Decreto Supremo Nº 017-2001/PCM, del 21.02.2001, señala expresamente como Asuntos Excluidos de la Competencia de SUNASS la definición de políticas y aprobación de normas sobre saneamiento ambiental, calidad sanitaria del agua y protección del ambiente, su fiscalización y sanción.

Además los incisos b) y c) del artículo 34 del citado Decreto Supremo Nº 017-2001/PCM establece una función únicamente de supervisión y no de fiscalización de SUNASS sobre las Entidades Prestadoras de Servicios de Saneamiento, respecto al cumplimiento de los niveles de cobertura y calidad de los servicios de agua potable y alcantarillado establecidos por SUNASS.

En consecuencia, del análisis de los dispositivos legales antes reseñados, se deduce que estaríamos frente a una clara concurrencia de funciones en el plano de la Función de Supervisión del cumplimiento de las Normas Legales referidos a la Calidad del Agua Potable en el Perú, tanto por parte de la Dirección General de Saneamiento Básico DIGESA del Ministerio de Salud y por la Gerencia de Supervisión y Fiscalización de la Superintendencia Nacional de Servicios de Saneamiento SUNASS.
4.2 **Población y cobertura de los servicios de agua potable**

4.2.1 **Distribución de la población del país**

Según proyecciones realizadas por el INEI, el Perú al año 2002 tenía una población total de 26'750 millones de habitantes (100%), de los cuales 19'350 millones (72,3%) era urbana y 7'400 millones (27,7%) rural.

<table>
<thead>
<tr>
<th>Población Total</th>
<th>26'750 Millones (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbana</td>
<td>19.350 Millones (72,3%)</td>
</tr>
<tr>
<td>Rural</td>
<td>7.400 Millones (27,7%)</td>
</tr>
</tbody>
</table>

Fuente: INEI- Estimaciones y Proyecciones de Población 1950-2005

De la población urbana, 15.6 millones (80,6%) dispone del servicio de agua, la cual es brindada por las 45 EPS reconocidas por la SUNASS y 3.7 millones (19,4%) es atendida por otras formas de administración, tales como empresas municipales. De la población atendida por las EPS reconocidas, 7.5 millones (48%) de habitantes reciben el servicio de agua de SEDAPAL y los 8.1 millones (52%) restantes, de las 44 EPS.

<table>
<thead>
<tr>
<th>Urbana</th>
<th>19.350 Millones (72,3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS reconocidas por SUNASS</td>
<td>15.6 Millones (80,6%)</td>
</tr>
<tr>
<td>SEDAPAL</td>
<td>7.5 Mill. (48%)</td>
</tr>
<tr>
<td>44 EPS Municipales</td>
<td>8.1 Mill. (52%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rural</th>
<th>7.400 Millones (27,7%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otros</td>
<td>3.7 Millones (19,4%)</td>
</tr>
<tr>
<td>Municipalidades, JASS, Organizaciones Comunales, etc.</td>
<td>7.3 Millones (98,6%)</td>
</tr>
<tr>
<td>Otros (No identif.)</td>
<td>0.1 Millones (1,4%)</td>
</tr>
</tbody>
</table>

De la población rural, 7.3 millones (98,6%) reciben el servicio de agua de las municipalidades, JASS, organizaciones comunales, etc. y los 100.000 restantes (1,4%) corresponden a poblaciones dispersas sin ningún tipo de organización que los atienda.

4.2.2 **Población por centros poblados**

El número de centros poblados en el Perú, según el Censo del año 1993, ascendía a 84 mil, de estos 66 mil son catalogados como dispersos, y 18 mil (17 mil como rurales y 660 como urbanos) pueden ser considerados como concentrados susceptibles de ser ejecutados en programas efectivos de vigilancia y control.
La población dispersa según se puede observar en el cuadro 5, es la que presenta las más serias deficiencias en los servicios de agua y saneamiento, con una cobertura en agua que varía entre 0,4% a 3,1% y en alcantarillado de 0,3% a 2%, le sigue el ámbito rural con una cobertura en agua que varía desde 9,6% hasta 60,3% y en alcantarillado desde 6,1% hasta 48,3% y la población urbana presenta una cobertura en agua comprendida entre el 75,7% al 91,5% y en alcantarillado de 66,8% a 90,6%.

Cuadro 5. Población por centros poblados y porcentaje de población servida con el servicio de agua y saneamiento

<table>
<thead>
<tr>
<th>Rango poblacional</th>
<th>Nº Centros Poblados</th>
<th>Población</th>
<th>Población servida</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Urbana</td>
<td>Rural</td>
</tr>
<tr>
<td>< 50</td>
<td>46.120</td>
<td>594.863</td>
<td>7.707</td>
<td>587.156</td>
</tr>
<tr>
<td>50-99</td>
<td>9.765</td>
<td>707.324</td>
<td>34.249</td>
<td>673.075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-199</td>
<td>10.568</td>
<td>1.519.897</td>
<td>129.246</td>
<td>1.390.651</td>
</tr>
<tr>
<td><= 199</td>
<td>66.453</td>
<td>2.822.084</td>
<td>171.202</td>
<td>2.650.882</td>
</tr>
<tr>
<td>200-49998</td>
<td>10.693</td>
<td>3.312.135</td>
<td>743.866</td>
<td>2.568.269</td>
</tr>
<tr>
<td>500-999</td>
<td>3.522</td>
<td>2.417.931</td>
<td>1.358.748</td>
<td>1.059.183</td>
</tr>
<tr>
<td>1000-49999</td>
<td>2.718</td>
<td>5.551.001</td>
<td>5.239.578</td>
<td>311.423</td>
</tr>
<tr>
<td>200-49999</td>
<td>16.933</td>
<td>11.281.067</td>
<td>7.342.192</td>
<td>3.938.875</td>
</tr>
<tr>
<td>5000-99999</td>
<td>424</td>
<td>2.914.187</td>
<td>2.914.187</td>
<td>-</td>
</tr>
<tr>
<td>10000-499999</td>
<td>223</td>
<td>4.044.496</td>
<td>4.044.496</td>
<td>-</td>
</tr>
<tr>
<td>50000-19999999</td>
<td>13</td>
<td>986.522</td>
<td>986.522</td>
<td>-</td>
</tr>
<tr>
<td>50000-19999999</td>
<td>660</td>
<td>7.945.205</td>
<td>7.945.205</td>
<td></td>
</tr>
<tr>
<td>Total República</td>
<td>84.046</td>
<td>22.048.356</td>
<td>15.458.599</td>
<td>6.589.757</td>
</tr>
</tbody>
</table>

Fuente: INEI - IX Censo de Población y IV de Vivienda 1993- Equipo "Estudio Sectorial" PRONAP
* Incluye sólo conexiones a red pública dentro y fuera de la vivienda (códigos 1 y 2)

SUNASS, en aplicación al D.S. Nº 015-96-PRES, que establece el límite de 2.000 habitantes para diferenciar los centros poblados de las áreas urbana y rural, en el año 2000 distribuyó los centros poblados y la población urbana y rural por rangos poblacionales, estimando un total de 81 mil sin considerar las provincias de Lima y Callao, de estos 66 mil son catalogados como dispersos, 14 mil como rurales y mil como urbanos.

4.2.3 Cobertura general

En el cuadro 6 que presenta la cobertura según tipo de servicio de abastecimiento de agua en los años 1993, 1998 y 2002, se aprecia incremento en el porcentaje de la población total con conexión y fuente cercana de 70,6% en el año 1993 a 75,4% y 79,2% en los años 1998 y 2002 respectivamente; contrariamente el porcentaje de población total sin servicios, ha disminuido de 29,4% en 1993 a 25% y 20,6% en los años 1998 y 2002 respectivamente.
Cuadro 6. Cobertura según tipo de servicio de agua potable (porcentaje)

<table>
<thead>
<tr>
<th>Tipo de Servicio</th>
<th>Urbano</th>
<th>Rural</th>
<th>Nacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de población servida con conexión domiciliaria</td>
<td>67,6</td>
<td>76,3</td>
<td>77,6</td>
</tr>
<tr>
<td>% de población servida sin conexión domiciliaria, pero con acceso a agua por fuente cercana</td>
<td>21,1</td>
<td>10,6</td>
<td>16,3</td>
</tr>
<tr>
<td>% de población total con conexión y fuente cercana</td>
<td>88,7</td>
<td>86,9</td>
<td>93,9</td>
</tr>
<tr>
<td>% Población total sin servicios</td>
<td>11,3</td>
<td>13,0</td>
<td>6,1</td>
</tr>
</tbody>
</table>

En cuanto a la distribución por tipo de abastecimiento de agua, la comparación de los datos de la Encuesta Nacional de Hogares realizado por el INEI en los años 1997 y 2002, que se muestra en el cuadro 7, indica que en el ámbito urbano el porcentaje de hogares con abastecimiento de agua dentro de la vivienda se incrementó del 73,8% en 1997 al 77,6% en 2002. En cambio, los hogares servidos por red pública con llave en el patio se redujeron del 6,3% al 2,5%. Otras reducciones importantes son también por pilón de 4,1% a 3,6%, por río, acequia, manantial o similar de 3,1% a 2% y de otras fuentes de 6,2% a 4,1%. Sin embargo, se nota un incremento en los servicios por pozos que ascienden de 2% a 3,8% y la prestación del servicio por medio de camiones cisterna de 4,5% a 6,4%. En el ámbito rural el porcentaje de hogares con abastecimiento de agua dentro de la vivienda se incrementó de 17,7% en 1997 a 32,9% en 2002 y se mantuvo en 0,4% los servidos con llave en el patio. El servicio mediante pilón se incrementó de 4,9% a 6,3%, por camiones cisterna de 0,4% a 0,7%; en cambio los servidos por pozo se redujeron de 13,6% a 11,4%, así como también por río, acequia, manantial o similar se redujo de 58% a 45,1% y de otras fuentes de 5% a 3,1%.
Cuadro 7. Encuestas nacionales de hogares - Años 1997 y 2002

<table>
<thead>
<tr>
<th>Tipo de abastecimiento</th>
<th>Año 1997 (%)</th>
<th>Año 2002 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Conexión domiciliaria completa</td>
<td>62,1</td>
<td>62,1</td>
</tr>
<tr>
<td>Llave en el patio</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>Pilón de uso público</td>
<td>4,5</td>
<td>4,4</td>
</tr>
<tr>
<td>Camión – cisterna u otro similar</td>
<td>4,4</td>
<td>4,4</td>
</tr>
<tr>
<td>Pozo</td>
<td>6,4</td>
<td>6,4</td>
</tr>
<tr>
<td>Río, acequia, manantial o similar</td>
<td>16,9</td>
<td>16,9</td>
</tr>
<tr>
<td>Otra</td>
<td>3,7</td>
<td>3,7</td>
</tr>
<tr>
<td>Urbana</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Conexión domiciliaria completa</td>
<td>73,8</td>
<td>77,6</td>
</tr>
<tr>
<td>Llave en el patio</td>
<td>6,3</td>
<td>2,5</td>
</tr>
<tr>
<td>Pilón de uso público</td>
<td>4,1</td>
<td>3,6</td>
</tr>
<tr>
<td>Camión – cisterna u otro similar</td>
<td>4,5</td>
<td>6,4</td>
</tr>
<tr>
<td>Pozo</td>
<td>2,0</td>
<td>3,8</td>
</tr>
<tr>
<td>Río, acequia, manantial o similar</td>
<td>3,1</td>
<td>2,0</td>
</tr>
<tr>
<td>Otra</td>
<td>6,2</td>
<td>4,1</td>
</tr>
<tr>
<td>Rural</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Conexión domiciliaria completa</td>
<td>17,7</td>
<td>32,9</td>
</tr>
<tr>
<td>Llave en el patio</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Pilón de uso público</td>
<td>4,9</td>
<td>6,3</td>
</tr>
<tr>
<td>Camión – cisterna u otro similar</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>Pozo</td>
<td>13,6</td>
<td>11,4</td>
</tr>
<tr>
<td>Río, acequia, manantial o similar</td>
<td>58,0</td>
<td>45,1</td>
</tr>
<tr>
<td>Otra</td>
<td>5,0</td>
<td>3,1</td>
</tr>
</tbody>
</table>

2002- INEI- Encuesta Nacional de Hogares-2002-IV

4.3 Vigilancia y control de la calidad del agua para consumo humano

4.3.1 Programa de vigilancia

✓ Situación del programa

Según el cuadro 8, el ámbito operativo de DIGESA, es el 76% de la población total del país, que es atendida por las 34 Direcciones de Salud ubicadas en todo el país; de estos al segundo trimestre de 2003, el 41% tuvieron acceso a los servicios de agua segura; es decir sólo 8.4 millones de 20.4 millones de habitantes, tienen acceso a agua tratada y desinfectada, tal como se muestra en los cuadros y gráfico siguiente:
Cuadro 8. Resumen

<table>
<thead>
<tr>
<th>Ámbito operativo</th>
<th>Distribución población servida</th>
<th>Ejecutado al 2do. trimestre 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Población</td>
<td>%</td>
</tr>
<tr>
<td>Urbano</td>
<td>13.363.689</td>
<td>65,34</td>
</tr>
<tr>
<td>Peri urbano</td>
<td>1.156.544</td>
<td>5,65</td>
</tr>
<tr>
<td>Rural</td>
<td>5.931.762</td>
<td>29,00</td>
</tr>
<tr>
<td>Total</td>
<td>20.451.995</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente: MINSA- % de la población vigilada por DIGESA-2º trimestre 2003

De estos 8.4 millones, el 59% (7.8 millones), corresponde al ámbito urbano, 11% (124.7 mil) al peri urbano y 6,5% (384.1 mil) al rural. Estas cifras fueron calculadas a partir de la comparación de la población vigilada en el trimestre y la población total atendida por cada ámbito operativo.

Comparando con la población proyectada al año 2002, se tiene que la población atendida es el 76% y con acceso a agua segura, es el 41%, tal como se aprecia en el cuadro y figura respectiva.

<table>
<thead>
<tr>
<th>Población total</th>
<th>26,750,000</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población atendida</td>
<td>20,451,995</td>
<td>76%</td>
</tr>
<tr>
<td>Pob.c/ acceso a agua segura</td>
<td>8,399,672</td>
<td>41%</td>
</tr>
</tbody>
</table>

Población Total, servida y vigilada con acceso al agua de bebida segura por DIGESA
Al respecto, cabe realizar algunos comentarios:

- El valor obtenido de 41% de la población que consume agua segura, es igual al valor reportado por la OPS hace más de tres años, es decir en términos generales, no hubo avance. El ámbito rural es el más afectado sólo el 6,5% consume agua segura.

- La población total proyectada por INEI al año 2002 es de 26.7 millones de habitantes, distinto a la proyectada por DIGESA en el cuadro 8, que es de 25.8 millones.

Entre las causas de esta situación se podría asumir a lo siguiente:

- Falta de normas específicas para una adecuada vigilancia, ciñéndose sólo a disposiciones para su evaluación a través de indicadores, tal como se puede apreciar en el siguiente cuadro, que de un total de 100 puntos considerado para el Indicador Nº 02 (porcentaje de la población con acceso a agua de bebida segura vigilada en áreas urbana y rural) el aspecto relacionado a la calidad del agua ocupa la cuarta parte (25%) y las tres cuartas partes (75%) restantes están distribuidas en los aspectos relacionados con la recepción, presentación, distribución, análisis y consolidación de la información.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Criterio de puntuación del Ind. Nº 02</th>
<th>Puntaje asignado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recepción de reportes en plazo establecido</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Presentación de información en formatos modelo</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Registro de la población total con servicio de agua y población vigilada con consumo de agua segura</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>La vigilancia incluye ámbitos:</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Urbano</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Peri urbano</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Parámetros registrados de la calidad del agua</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>a) Cloro residual</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>b) pH</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>c) Turbiedad</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>d) Conductividad</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>e) Colimetría</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Análisis y consolidación de la información</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Valor asignado para el período 7

Fuente: DIGESA-Criterios de Puntuación utilizado para la evaluación del Indicador Nº 2 - 2do. Trimestre de 2003
• De este cuadro se puede precisar que DIGESA exige a sus Direcciones Regionales análisis de sólo 5 parámetros físicos químicos y bacteriológicos.

• DIGESA, no cuenta con un programa formal de vigilancia de la calidad del agua para consumo humano y podría ser considerado como una evaluación somera del agua, dedicándose en gran medida a evaluar el contenido de cloro residual, pH, turbiedad, conductividad y colimetría descritos en el cuadro anterior. Esta labor lo realiza a través de sus 34 Direcciones Regionales de Salud, distribuidas en los siguientes departamentos:

<table>
<thead>
<tr>
<th>Nº</th>
<th>Direcciones de Salud</th>
<th>Departamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Amazonas</td>
<td>Amazonas</td>
</tr>
<tr>
<td>02</td>
<td>Huaraz y Chimbote.</td>
<td>Ancash</td>
</tr>
<tr>
<td>03</td>
<td>Abancay</td>
<td>Apurímac</td>
</tr>
<tr>
<td>04</td>
<td>Andahuaylas (Chanka).</td>
<td>Arequipa</td>
</tr>
<tr>
<td>05</td>
<td>Arequipa.</td>
<td>Arequipa</td>
</tr>
<tr>
<td>06</td>
<td>Ayacucho y Puquio.</td>
<td>Ayacucho</td>
</tr>
<tr>
<td>07</td>
<td>Bagua</td>
<td>Cajamarca</td>
</tr>
<tr>
<td>08</td>
<td>Cajamarca</td>
<td>Cajamarca</td>
</tr>
<tr>
<td>09</td>
<td>Chota</td>
<td>Cajamarca</td>
</tr>
<tr>
<td>10</td>
<td>Cutervo</td>
<td>Cajamarca</td>
</tr>
<tr>
<td>11</td>
<td>Jaén</td>
<td>Cajamarca</td>
</tr>
<tr>
<td>12</td>
<td>I Callao</td>
<td>Lima</td>
</tr>
<tr>
<td>13</td>
<td>Cusco.</td>
<td>Cusco</td>
</tr>
<tr>
<td>14</td>
<td>Huancavelica.</td>
<td>Huancavelica</td>
</tr>
<tr>
<td>15</td>
<td>Huanuco.</td>
<td>Huánuco</td>
</tr>
<tr>
<td>16</td>
<td>Ica, Chincha y Nasca</td>
<td>Ica</td>
</tr>
<tr>
<td>17</td>
<td>Junín y Huancayo.</td>
<td>Junín</td>
</tr>
<tr>
<td>18</td>
<td>La Libertad.</td>
<td>La Libertad</td>
</tr>
<tr>
<td>19</td>
<td>Lambayeque.</td>
<td>Lambayeque</td>
</tr>
<tr>
<td>20</td>
<td>II Lima Sur</td>
<td>Lima</td>
</tr>
<tr>
<td>21</td>
<td>III Lima Norte</td>
<td>Lima</td>
</tr>
<tr>
<td>22</td>
<td>IV Lima Este</td>
<td>Lima</td>
</tr>
<tr>
<td>23</td>
<td>V Lima Ciudad</td>
<td>Lima</td>
</tr>
<tr>
<td>24</td>
<td>Loreto.</td>
<td>Loreto</td>
</tr>
<tr>
<td>25</td>
<td>Madre de Dios</td>
<td>Madre de Dios</td>
</tr>
<tr>
<td>26</td>
<td>Moquegua.</td>
<td>Moquegua</td>
</tr>
<tr>
<td>27</td>
<td>Pasco.</td>
<td>Pasco</td>
</tr>
<tr>
<td>28</td>
<td>Piura</td>
<td>Piura</td>
</tr>
<tr>
<td>29</td>
<td>Piura-Luciano Castillo Colona</td>
<td>Piura</td>
</tr>
<tr>
<td>30</td>
<td>Puno.</td>
<td>Puno</td>
</tr>
<tr>
<td>31</td>
<td>San Martin.</td>
<td>San Martín</td>
</tr>
<tr>
<td>32</td>
<td>Tacna.</td>
<td>Tacna</td>
</tr>
<tr>
<td>33</td>
<td>Tumbes</td>
<td>Tumbes</td>
</tr>
<tr>
<td>34</td>
<td>Ucayali.</td>
<td>Ucayali</td>
</tr>
</tbody>
</table>

Fuente: Cuadro 8. Población con acceso a agua de bebida segura, vigilada por DIGESA
Niveles operativos

En cada Dirección de Salud, existe una Dirección Ejecutiva de Saneamiento Básico (DESAB) y dentro de esta dirección un área de Saneamiento Ambiental que realiza entre otras funciones, la vigilancia de los programas nacionales de la calidad del agua. El organigrama adjunto, ilustra lo señalado.

Los niveles operativos que ejercen la vigilancia de la calidad del agua, lo realizan de la siguiente manera:

Las DESABs, tienen las siguientes funciones:

- Participar coordinadamente en la formulación de los programas nacionales de saneamiento básico.
- Normar, establecer y controlar criterios técnicos en la calidad física, química y biológica del agua destinada al consumo humano.
- Ejecutar programas de abastecimiento de agua y letrinización; y, administrar los registros que le corresponden.
Las directrices para ejercer la vigilancia, tal como se muestra en el organigrama, proceden de las siguientes líneas de autoridad:

Nivel Central

- Ministerio de Salud
- Dirección Ejecutiva de Salud Ambiental

Nivel Regional

- Dirección de Salud (34)
- Dirección de Saneamiento Básico (34)
- REDES, UTES, UBAS, ZONADIS y SBS (472).
- Sub REDES y micro REDES (870).

Nivel Local

- Centros de Salud (1849)
- Puestos de Salud (4868)

Todos los organismos descentralizados desde de los niveles local y regional reportan directamente a la Dirección Regional y este a DIGESA, tal como se muestra en el siguiente organigrama:
4.3.2 Programa de control de la calidad

✓ Situación del Programa

Según el cuadro 9, la población servida con agua potable en el ámbito de las 45 EPS reconocidas por SUNASS, es el 48% de la población total del país; de estos, el 87% (año 2002), tuvieron acceso a los servicios de agua segura; es decir 11.2 millones de un total de 12.8 millones de habitantes, tuvieron acceso a agua tratada y desinfectada, tal como se evidencia en el gráfico y cuadro de población que se muestran:

Cuadro 9. Población servida con agua potable

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Población</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total del país</td>
<td>26'750,000</td>
<td>100%</td>
</tr>
<tr>
<td>Pobl. servida por 45 EPS</td>
<td>12'870,648</td>
<td>48%</td>
</tr>
<tr>
<td>Población muestreo</td>
<td>11'206,228</td>
<td>87%</td>
</tr>
</tbody>
</table>
Respecto a la población controlada o de muestreo realizado por las EPS, en el siguiente cuadro, se puede apreciar la evolución de la población con acceso a agua segura a partir del año 1995, donde hay un notable incremento en el año 1997 y se estabiliza en el año 2002. Estos logros pueden encontrar su explicación en el cumplimiento de las EPS a las directivas publicadas por SUNASS en los años 1997 y 1999 respectivamente.

<table>
<thead>
<tr>
<th>Año</th>
<th>Población de muestreo</th>
<th>Directivas sobre control de la calidad del agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>644 891</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>686 404</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>2 613 315</td>
<td>Resolución Nº 180-97-SUNASS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución Nº 190-97-SUNASS</td>
</tr>
<tr>
<td>1998</td>
<td>2 349 627</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>7 860 147</td>
<td>Resolución Nº 1121-99-SUNASS</td>
</tr>
<tr>
<td>2000</td>
<td>10 340 553</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>11 210 177</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>11 206 228</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: SUNASS- Gerencia de Supervisión y Fiscalización- Laboratorio de Referencia y Control – Año 2003

En términos de “número de muestreo”, el referido cuadro presenta al año 2002, un avance de 97,4% que revela la eficacia de las EPS en el muestreo de cloro residual realizado en el agua distribuida; sin embargo en términos de cobertura de desinfección, estaríamos hablando de sólo 87%.
Esta situación se debe a que la SUNASS ejerce su acción de supervisión del control de la calidad del agua en sólo las 45 EPS reconocidas, que están ubicadas en los siguientes departamentos:

<table>
<thead>
<tr>
<th>Nº</th>
<th>EPS</th>
<th>Departamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>EMUSAP S.R.L.</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>EMAPAU S.R.L.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>EMAPAB S.R.L.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>EPS CHAVIN S.A.</td>
<td>Amazonas</td>
</tr>
<tr>
<td>05</td>
<td>SEDA CHIMBOTE S.A.</td>
<td>Ancash</td>
</tr>
<tr>
<td>06</td>
<td>EMUSAP ABANCA Y S.A.</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>EMSAP CHANKA S.A.</td>
<td>Apurimac</td>
</tr>
<tr>
<td>08</td>
<td>SEDAPAR S.A.</td>
<td>Arequipa</td>
</tr>
<tr>
<td>09</td>
<td>EPS AYACUCHO S.A.</td>
<td>Ayacucho</td>
</tr>
<tr>
<td>10</td>
<td>SEMDACAJ S.A.</td>
<td>Cajamarca</td>
</tr>
<tr>
<td>11</td>
<td>MARAÑON S.R.L.</td>
<td>Cusco</td>
</tr>
<tr>
<td>12</td>
<td>SEDACUSCO S.A.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EMPSSAPAL S.A.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>EMAQ S.R.L.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SEMAPA HUANCAVELICA S.A.</td>
<td>Huancavelica</td>
</tr>
<tr>
<td>16</td>
<td>SEDA HUÁNUCO S.A.</td>
<td>Huánuco</td>
</tr>
<tr>
<td>17</td>
<td>EMAPICA S.A.</td>
<td>Ica</td>
</tr>
<tr>
<td>18</td>
<td>SEMAPACH S.A.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>EMAPISCO S.A.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>EMAPIVIGSA S.A.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>MANTARO S.A.</td>
<td>Junín</td>
</tr>
<tr>
<td>22</td>
<td>SELVA CENTRAL S.A.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SIERRA CENTRAL S.A.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SEDALIB S.A.</td>
<td>La Libertad</td>
</tr>
<tr>
<td>25</td>
<td>EPSEL S.A.</td>
<td>Lambayeque</td>
</tr>
<tr>
<td>26</td>
<td>SEDALORETO S.A.</td>
<td>Loreto</td>
</tr>
<tr>
<td>27</td>
<td>SEDAPAL S.A.</td>
<td>Lima</td>
</tr>
<tr>
<td>28</td>
<td>EMA PA CAÑETE S.A.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>EMA PA HUARAZ S.A.</td>
<td>Madre de Dios</td>
</tr>
<tr>
<td>30</td>
<td>EMA PA HUACHO S.A.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>SEMAPA BARRANCA S.A.</td>
<td>Moquegua</td>
</tr>
<tr>
<td>32</td>
<td>EMA PAT S.R.L.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>MOQUEGUA S.R.L.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ILO S.A.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>GRAU S.A.</td>
<td>Piura</td>
</tr>
</tbody>
</table>
Desatendiendo la supervisión en las demás empresas municipales del ámbito urbano y en las JASS del ámbito rural, que conforme a lo analizado en el numeral 4.1 del marco legal regulatorio, le corresponde regularlos.

✓ Niveles operativos

En la mayoría de las EPS, tal como nos muestra el organigrama, existe un Área o Equipo de Control de la Calidad que depende directamente del Departamento de Operaciones o de la Gerencia Operacional y realiza funciones de supervisión de la calidad del agua suministrada a la población dentro de los LMP establecidos.
Estas EPS realizan actividades de planeamiento, de inspección, evaluación y control de resultados y la adopción de medidas correctivas; también, cuentan con planes de control de calidad formulado de acuerdo a un enfoque sistémico propuesto por la GTZ/PROAGUA donde se fijan objetivos, actividades, relaciones con los organismos internos y externos, funciones y responsabilidades en los niveles tanto directivos como operativos; sin embargo, en muchas ocasiones estas acciones no se cumplen especialmente por decisiones políticas en los niveles directivos. Dedicándose en gran medida a reportar a SUNASS la información requerida en las directivas vigentes.

La SUNASS, como organismo regulador de la prestación de los servicios de agua, realiza **acciones de evaluación del control de la calidad que realizan las EPS**, para este fin ha fijado los siguientes niveles:

- **El Control Básico** (12 EPS), que consiste en la determinación de cloro residual, turbiedad, pH, coliformes totales y coliformes termotolerantes, realizarán las EPS de: EMAQ, SEMAPA HUANCAVELICA, CHANKA, SELVA CENTRAL, SIERRA CENTRAL, MANTARO, EMAPA PASCO, EMAPAB, EPSSMU, EMUSAP AMAZONAS, EMAPAT y MARAÑON.

- **Control 1** (14 EPS) que consiste en la determinación del Control Básico + conductividad, cloruros, sulfatos, dureza, nitratos, color y aluminio (en plantas de tratamiento), realizarán las EPS de: EMAPA HUACHO, EMAPA HUARAL, SEMAPA BARRANCA, SEMAPACH, CAÑETE, EMAPISCO, EMAPAVIGSSA, EMFAPA TUMBES, EMPSSAPAL, EMUSAP ABANCAY, SEDAHUANUCO, MOYOBAMBA, NOR PUNO y YUNGUYO.

- **Control 2** (16 EPS) que consiste en la determinación de Control 1 + hierro, manganeso y cobre, realizarán las EPS de: EMAPICA, GRAU, SEDALIB, EPSEL, SEDACHIMBOTE, CHAVIN, SEDAPAR, SEDACUSCO, SEDAULACA, SEDAILO, AYACUCHO, EMSA PUNO, MOQUEGUAY, LORETO, SAN MARTIN y EMAPACOP.

- **Control 3** (3 EPS) que consiste en la determinación de Control 2 + plomo, arsénico, cadmio (opcional) y mercurio (opcional) y realizarán las EPS: TACNA, SEDACAJ y SEDAPAL

Estos controles de acuerdo a las directiva vigentes, se efectuarán a la salida de las plantas de tratamiento, fuentes subterráneas, reservorios y redes de distribución.

4.4 Calidad del agua

4.4.1 Bacteriológica y físicoquímico

El Reglamento de la calidad del agua considera **como de cumplimiento obligatorio**, los siguientes parámetros físicoquímicos y bacteriológicos:
i) El 95% del total de las muestras debe estar libre de contaminación de bacterias coliformes,

ii) No debe contener en exceso:

<table>
<thead>
<tr>
<th>Elevador</th>
<th>Valor permitido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plomo</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Flúor</td>
<td>2.0 mg/L</td>
</tr>
<tr>
<td>Arsénico</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Selenio</td>
<td>0.05 mg/L</td>
</tr>
</tbody>
</table>

La presencia de estos parámetros, constituye razón para rechazar el agua.

iii) Asimismo de preferencia no debe contener cantidades mayores a:

<table>
<thead>
<tr>
<th>Elevador</th>
<th>Valor permitido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre</td>
<td>≤ 3 mg/L</td>
</tr>
<tr>
<td>Hierro y Mn</td>
<td>≤ 0.5 mg/L</td>
</tr>
<tr>
<td>Magnesio</td>
<td>≤ 125 mg/L</td>
</tr>
<tr>
<td>Cinc</td>
<td>≤ 15 mg/L</td>
</tr>
<tr>
<td>Cloruros</td>
<td>≤ 250 mg/L</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>≤ 250 mg/L</td>
</tr>
<tr>
<td>Sólidos totales</td>
<td>≤ 1000 mg/L</td>
</tr>
</tbody>
</table>

El pH no debe ser mayor de 10.6 y la alcalinidad a carbonatos no excederá 120 mg/L.

iv) El número de muestras por mes tomadas en el sistema de distribución para ser examinadas bacteriológicamente, deben concordar con la población abastecida, según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Población servida</th>
<th>Número mínimo de muestras por mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,500</td>
<td>1</td>
</tr>
<tr>
<td>10,000</td>
<td>7</td>
</tr>
<tr>
<td>25,000</td>
<td>25</td>
</tr>
<tr>
<td>100,000</td>
<td>100</td>
</tr>
<tr>
<td>1'000,000</td>
<td>300</td>
</tr>
<tr>
<td>2’000,000</td>
<td>390</td>
</tr>
<tr>
<td>5’000,000</td>
<td>500</td>
</tr>
</tbody>
</table>

Calidad bacteriológica

Las 44 DESAS, si bien están obligadas a realizar la vigilancia de la calidad del agua, se ha observado que se dedican principalmente a determinar el contenido de cloro residual, pH, turbiedad, conductividad y Coliformes termotolerantes del agua distribuida, y luego reportar sus datos a la Sede Central para su procesamiento. Lamentablemente, la DIGESA no realiza ninguna función investigativa dirigida a definir el riesgo que representa la calidad del agua abastecida para la población consumidora, por lo que se considera que la actividad que realiza es más un proceso de control de la calidad el agua que una vigilancia.

Por su parte, las EPS reportan sus datos directamente a la SUNASS, así en el período de 2000 a 2002 informan haber realizado un total de 208.365 análisis bacteriológicos, distribuidos en muestras tomadas en fuentes de agua, plantas de tratamiento, reservorios y redes de distribución, de acuerdo a lo mostrado en el cuadro 10.
Cuadro 10. Muestras bacteriológicas del agua tomadas por las EPS
Años: 2000 – 2002

<table>
<thead>
<tr>
<th>AÑO</th>
<th>PLANTAS</th>
<th>FUENTES</th>
<th>RESERVORIOS</th>
<th>RED</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>25.825</td>
<td>25.854</td>
<td>56.802</td>
<td>99.884</td>
<td>208.365</td>
</tr>
</tbody>
</table>

Fuente: SUNASS Gerencia de Supervisión y Fiscalización-Laboratorio de Referencia y Control- Año 2002

Del total de muestras bacteriológicas, SUNASS difundió los resultados sobre % de muestras que superan el LMP de los años 2000 y 2002, los cuales mostramos en el cuadro 11, cuyos valores se encuentran dentro de los establecidos por el Reglamento.

Cuadro 11. Control bacteriológico de la calidad del agua en las EPS
Años: 2000 y 2002
(Porcentaje de muestras con Bacterias Coliformes)

<table>
<thead>
<tr>
<th>Componentes del sistema de agua potable</th>
<th>AÑO 2,000</th>
<th></th>
<th>AÑO 2,002</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Muestras</td>
<td>% sobre LMP</td>
<td># Muestras</td>
<td>% sobre LMP</td>
</tr>
<tr>
<td>Planta de Tratamiento</td>
<td>8.134</td>
<td>0,77</td>
<td>8.516</td>
<td>0,68</td>
</tr>
<tr>
<td>Fuentes subterráneas</td>
<td>9.395</td>
<td>1,86</td>
<td>7.209</td>
<td>3,31</td>
</tr>
<tr>
<td>Reservorios</td>
<td>17.723</td>
<td>0,51</td>
<td>19.224</td>
<td>1,17</td>
</tr>
<tr>
<td>Redes</td>
<td>28.441</td>
<td>1.37</td>
<td>39.265</td>
<td>0,72</td>
</tr>
<tr>
<td>Total</td>
<td>63.693</td>
<td>1,12%</td>
<td>74.205</td>
<td>1,09%</td>
</tr>
</tbody>
</table>

Fuente: SUNASS Gerencia de Supervisión y Fiscalización-Laboratorio de Referencia y Control- Año 2001

Del total de las muestras analizadas en el año 2000, el 41% correspondió a Coliformes Totales, el 38% a Coliformes Termotolerantes y el 20% a Bacterias Heterotróficas, sin que se sepa la cantidad de coliformes por cada grupo.

<table>
<thead>
<tr>
<th></th>
<th>AÑO 2000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes Totales</td>
<td>26.328</td>
<td>41%</td>
</tr>
<tr>
<td>Coliformes Termotolerantes</td>
<td>24.264</td>
<td>38%</td>
</tr>
<tr>
<td>Bacterias Heterotroficas</td>
<td>12.975</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>63.567</td>
<td>100%</td>
</tr>
</tbody>
</table>

A su vez, la SUNASS en cumplimiento de su función supervisora desde el año 2000 hasta el año 2002 ha evaluado en las EPS, a través de su Gerencia de Supervisión y Fiscalización, la calidad bacteriológica del agua para tal fin ha tomado un total de 2515 muestras que de las 208,365 tomadas por las EPS en el mismo período, representa un poco más del 1%, tal como se muestra en el cuadro 12.
Cuadro 12. Calidad bacteriológica del agua en las EPS
Años: 2000 - 2002
(Porcentaje de muestras con Bacterias Coliformes)

<table>
<thead>
<tr>
<th>Año</th>
<th>Población de muestreo</th>
<th>Nº de muestras</th>
<th>SUNASS</th>
<th>EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>10.340.553</td>
<td>564</td>
<td>63.693</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>11.210.177</td>
<td>871</td>
<td>70.467</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>11.206.228</td>
<td>1.080</td>
<td>74.205</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2.515</td>
<td>208.365</td>
<td></td>
</tr>
</tbody>
</table>

Relación Nº muestras SUNASS/EPS 1,2%

De los resultados obtenidos en el año 2001, que se muestra en el siguiente cuadro se aprecia que los valores hallados se encuentran dentro de los establecidos en el Reglamento.

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes Totales</td>
<td>20</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Coliformes Termotolerantes</td>
<td>15</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Bacterias Heterotroficas</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

Fuente: SUNASS-Evaluación de calidad bacteriológica del agua-Año 2001

Las localidades donde se encontraron bacterias coliformes fueron: Tacna, Moquegua, Barranca, Iquitos, Nazca, Chincha, Cajamarca, Perené, Pichanaki, Villarica, Piura y Tumbes.

En el cuadro 13, se aprecia incremento de muestras tomadas por la SUNASS dentro de su labor de supervisión de 112 registrada en el año 1995 a 1080 en el año 2002. Así mismo, es notorio el mejoramiento gradual de la calidad bacteriológica del agua para consumo humano y que en este mismo período, pasó de 26,8% a 1,48% para Coliformes Totales y de 13,4% a 0,74% para Coliformes Termotolerantes.

Cuadro 13. Supervisión de la calidad bacteriológica del agua realizada por SUNASS
Años: 1995 y 2002

<table>
<thead>
<tr>
<th>Año</th>
<th>Nº muestras</th>
<th>Coli. Total</th>
<th>Coli. Termotolerante</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>112</td>
<td>30(26,8%)</td>
<td>15 (13,4%)</td>
</tr>
<tr>
<td>1996</td>
<td>121</td>
<td>45(37,2%)</td>
<td>16(13,20%)</td>
</tr>
<tr>
<td>1997</td>
<td>285</td>
<td>28(9,80%)</td>
<td>16(5,60%)</td>
</tr>
<tr>
<td>1998</td>
<td>331</td>
<td>39(11,8%)</td>
<td>25(7,60%)</td>
</tr>
<tr>
<td>1999</td>
<td>496</td>
<td>46(9,27%)</td>
<td>15(5,04%)</td>
</tr>
<tr>
<td>2000</td>
<td>564</td>
<td>21(3,72%)</td>
<td>07(1,24%)</td>
</tr>
<tr>
<td>2001</td>
<td>871</td>
<td>20(2,30%)</td>
<td>07(0,80%)</td>
</tr>
<tr>
<td>2002</td>
<td>1080</td>
<td>16(1,48%)</td>
<td>08(0,74%)</td>
</tr>
</tbody>
</table>

Fuente: SUNASS Gerencia de Supervisión y Fiscalización-Laboratorio de Referencia y Control- Año 2002
Sin embargo en su evolución correspondiente al período de 1995 a 1999 se aprecia que la presencia de Coliformes Totales y Coliformes Termotolerantes, han sido superiores a 5%, incumpliendo con el Reglamento; en cambio en el período de 2000 a 2002, estos porcentajes disminuyeron a valores menores de 5%.

✓ Calidad fisicoquímico

Con relación a la calidad físico y químico, las EPS reportaron sus datos a la SUNASS haber tomado 1.1 millón de muestras para análisis físico químico desde el año 2000 hasta el año 2002, distribuidos en fuentes de agua, plantas de tratamiento, reservorios y redes de distribución, tal como lo evidencia el cuadro 14.

Cuadro 14. Muestras de agua tomadas por las EPS para análisis fisicoquímicos
Años: 2000 – 2002

<table>
<thead>
<tr>
<th>AÑO</th>
<th>PLANTAS</th>
<th>FUENTES</th>
<th>RESERVORIOS</th>
<th>RED</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>150.872</td>
<td>21.431</td>
<td>60.414</td>
<td>114.463</td>
<td>347.180</td>
</tr>
<tr>
<td>2001</td>
<td>153.415</td>
<td>20.592</td>
<td>71.090</td>
<td>130.110</td>
<td>375.207</td>
</tr>
<tr>
<td>2002</td>
<td>163.245</td>
<td>23.616</td>
<td>86.018</td>
<td>141.022</td>
<td>413.901</td>
</tr>
<tr>
<td>TOTAL</td>
<td>467.532</td>
<td>65.639</td>
<td>217.522</td>
<td>385.595</td>
<td>1.136.288</td>
</tr>
</tbody>
</table>

De un total de 347,180 muestras (reportadas en el año 2000) tomadas en las plantas de tratamiento, salida de fuentes subterráneas, reservorios y redes de distribución análisis físico y químico, 4,57% superaron los valores establecidos en el Reglamento y en el año 2002, este valor disminuyó a 3,22% de un total de 413,901 muestras, tal como se puede apreciar en el cuadro 15.

Cuadro 15. Control fisicoquímico de la calidad del agua en las EPS
Años: 2000 y 2002

<table>
<thead>
<tr>
<th>Componentes del sistema de agua potable</th>
<th>AÑO 2000</th>
<th>AÑO 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº Muestras</td>
<td>% sobre LMP</td>
</tr>
<tr>
<td>Planta de Tratamiento</td>
<td>150.872</td>
<td>4,99</td>
</tr>
<tr>
<td>Fuentes subterráneas</td>
<td>21.431</td>
<td>6,83</td>
</tr>
<tr>
<td>Reservorios</td>
<td>60.414</td>
<td>3,85</td>
</tr>
<tr>
<td>Redes</td>
<td>114.463</td>
<td>5,56</td>
</tr>
<tr>
<td>Total</td>
<td>347.180</td>
<td>4,57%</td>
</tr>
</tbody>
</table>

Cabe precisar que los análisis fisicoquímicos realizados, correspondieron a las determinaciones de: Turbiedad, pH, conductividad, color, dureza, cloruros, sulfatos, nitratos, aluminio y otros, no habiéndose realizado análisis de las siguientes sustancias:
• Obligatorias.- Plomo, Flúor, Arsénico y Selenio.
• Opcional.- Cobre, Hierro, Manganeso, Magnesio, Zinc y Sólidos Totales.

De esta manera, se aprecia incumplimiento al Reglamento al no haber realizado los análisis correspondientes a las sustancias obligatorias, señaladas anteriormente.

Del análisis de esta información, se deduce que si bien los análisis bacteriológico y físico químicos se encuentran dentro de los valores establecidos en el Reglamento; sin embargo estos resultados no concilian con los que se muestran en el cuadro 16, donde SUNASS informa que existen problemas de calidad en las EPS con los siguientes parámetros: Bacterias Coliformes en las redes de distribución, turbiedad, nitratos, hierro y manganeso, aluminio, arsénico (riesgo permanente), plomo, cadmio y mercurio (riesgo potencial), lo que debe suponerse que superan tanto los valores establecidos en el Reglamento como el LMP Referencial establecido por este organismo regulador.

Cuadro 16. Problemas de calidad de agua en las EPS

<table>
<thead>
<tr>
<th>Bajo contenido cloro residual</th>
<th>Coliformes en redes de distribución</th>
<th>Turbiedad</th>
<th>Alta cond., dureza, cloruros, sulfatos</th>
<th>Nitratos</th>
<th>Hierro y manganeso</th>
<th>Aluminio</th>
<th>Arsénico (riesgo Permanente)</th>
<th>Plomo, Cadmio, Mercurio (Riesgo potencial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMAPASCO</td>
<td>Emapasco</td>
<td>Emapasco</td>
<td>Emapasco</td>
<td>Emapasco</td>
<td>Emapasco</td>
<td>Emapasco</td>
<td>Emapasco</td>
<td>Emapasco</td>
</tr>
<tr>
<td>EMAPAVIGSA</td>
<td>Emapa yunguyo</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
</tr>
<tr>
<td>Emapacop</td>
<td>Emapa yunguyo</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
</tr>
<tr>
<td>EPS Marañon</td>
<td>Emapa yunguyo</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
</tr>
<tr>
<td>Selva Central</td>
<td>Emapa yunguyo</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
</tr>
<tr>
<td>EPS SMU</td>
<td>Emapa yunguyo</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
<td>Emapa</td>
</tr>
</tbody>
</table>

Fuente: SUNASS-GSF-Laboratorio de Referencia y Control –Año 2003
4.4.2 Estado de la desinfección del agua

El Reglamento de calidad de agua, no señala un valor determinado sobre el contenido de cloro residual en el agua distribuida.

La información sobre el estado de la desinfección en diferentes sistemas de abastecimiento de agua del país realizado por el DIGESA, no se encuentra disponible.

Por su parte, SUNASS para evaluar el control de la desinfección del agua realizada por las EPS, utiliza la Directiva sobre Desinfección de Agua para Consumo Humano, aprobada mediante Resolución de Superintendencia N° 190-97-SUNASS, donde precisa, lo siguiente:

- El contenido de cloro residual en el agua distribuida debe ser igual o mayor de 0,5 mg/L en un 80% del total de muestras tomadas y ninguna menor de 0,3 mg/L para evitar el riesgo de contener bacterias coliformes u otros microorganismos patógenos.
- El control de cloro residual debe aplicarse a la salida de plantas, salida de fuentes subterráneas, reservorios y en la red de distribución.
- El número de muestras que se tomen en la red de distribución está de acuerdo a la población de las localidades administradas; por cada zona de abastecimiento con menor de 20,000 habitantes corresponde tomar una muestra diaria, como mínimo.

El desempeño de las EPS durante el año 2001, fue como sigue:

- Las empresas que incumplieron con la directiva, por no haber reportado información trimestral o reportaron porcentajes menores del 80%, fueron: SEDAJULIACA, EMAPAVIGSSA y EPS YUNGUYO. Asimismo, las EPS que no cumplieron con la Directiva o que tuvieron problemas durante el año han sido las siguientes: SEMAPA BARRANCA, AMAPAB, EPS MARAÑON, EPSSMU, SEPS SELVA CENTRAL Y EMAPASCO.
- En cuanto al número de muestras para cloro tomadas en las redes de distribución, durante el año 2001 fue de 359,179 de las cuales el 96,5% fueron satisfactorias.

El cuadro 17, sobre el estado de la desinfección del agua distribuida reportado por las EPS muestra cuantitativamente haber realizado más de 1.4 millones de muestreos de cloro residual en el agua distribuida desde el año 1998 hasta el 2002 y cualitativamente un constante mejoramiento de la desinfección del agua para consumo humano, si se tiene en cuenta que en el año 1998 solamente 23 EPS cumplían con la directiva de abastecer agua con un contenido de cloro residual mayor a 0,5 mg/L. Esta situación cambia progresivamente en los años siguientes llegando al año 2002 donde se aprecia que 42 cumplieron con la directiva.
Cuadro 17. Estado de la desinfección en el agua distribuida reportado por las EPS desde 1,998 hasta 2002

<table>
<thead>
<tr>
<th>Años</th>
<th>Nº Muestras</th>
<th>No realizan</th>
<th>Nivel de cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>De 0 a 20%</td>
</tr>
<tr>
<td>1998</td>
<td>154.507</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1999</td>
<td>252.370</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>327.146</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>359.176</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>371.586</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1.464.785</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: SUNASS-Gerencia del Supervisión y Fiscalización-Laboratorio de Referencia y Control – Año 2002

En cuanto se refiere a las tecnologías utilizadas en la desinfección, se encuentra que la cloración con gas es la más empleada por las empresas y administraciones de los servicios de agua potable en el ámbito rural. Otra de las tecnologías es la aplicación de hipoclorito, que puede adquirirse comercialmente bajo la forma sódica o cálcica y siendo la primera capaz de ser generada in situ, sometiendo a electrólisis una solución de cloruro de sodio hasta obtener una concentración entre 0,5 y 0,6%.

4.5 Laboratorios existentes

DIGESA para sus labores de vigilancia de la calidad del agua cuenta con 213 laboratorios ubicados en sus 34 DESAS, de los cuales 181 se encuentran operativos, tal como se evidencia en el cuadro 18.

El servicio que brindan estos laboratorios son de nivel inicial (básico) compuestos por equipos portátiles para análisis físico, químico y bacteriológico generalmente de las marcas: Hach Drell, Millipore, Del Agua, entre otros y complementados con algunos otros equipos e instrumentos.

En el ámbito de las EPS, 35 empresas cuentan con laboratorios de diferentes niveles (inicial, intermedio y avanzado), donde se realizan controles de la calidad fisicoquímica, bacteriológica y otros, de acuerdo a la clasificación efectuada por SUNASS:

- En el nivel inicial.- Veintitrés (23) EPS realizan determinaciones de cloro residual, pH, turbiedad/conductividad, Coliformes Totales y Coliformes termotolerantes.
- En el nivel intermedio.- Nueve (09) EPS realizan determinaciones de cloro residual, pH, turbiedad/conductividad, Coliformes Totales y Coliformes termotolerantes, alcalinidad, dureza, cloruros, sulfatos y fierro.
En el nivel avanzado.- Tres (03) EPS además de realizar las determinaciones señaladas en el párrafo precedente, pueden determinar nitratos, manganeso, oxidabilidad, sólidos totales, DBO y DQO y otras.

Diez (10) empresas, no cuentan con equipos y ambientes de laboratorio y estas corresponden a aquellas cuyo servicio tiene como fuente de abastecimiento, agua subterránea.

Cuadro 18. Resumen del inventario de equipos de laboratorio para análisis de aguas

<table>
<thead>
<tr>
<th>Total Redes(1)</th>
<th>Laboratorios DESAS</th>
<th>Total Adm(2).</th>
<th>Laboratorios EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Operativo</td>
<td>Inoperativo</td>
</tr>
<tr>
<td>472</td>
<td>213</td>
<td>181</td>
<td>32</td>
</tr>
</tbody>
</table>

(1) Total de Redes, Utes,Ubas, Zonadis, SBS de las 34 DESAS
(2) Total de localidades administradas por las 45 EPS

Cabe señalar que la implementación de laboratorios en las EPS, se incrementó considerablemente en la década del año 1990 como resultado del aporte del PRONAP lo que permitió la implementación de 30 laboratorios especialmente para análisis de los niveles inicial e intermedio en el marco del Subprograma “B” de Mejoramiento Institucional y Operativo.

En general, la capacidad de laboratorios existentes en los ámbitos del DIGESA y SUNASS para las acciones de vigilancia y control de la calidad del agua de consumo humano, son del nivel inicial con más del 82% y sólo el 1,1% corresponde al avanzado. El siguiente cuadro resume lo señalado:

<table>
<thead>
<tr>
<th>Inicial</th>
<th>Intermedio</th>
<th>Avanzado</th>
<th>Inoperativos</th>
<th>Total(SUNASS y DIGESA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>204</td>
<td>9</td>
<td>3</td>
<td>32</td>
<td>248</td>
</tr>
<tr>
<td>82,2%</td>
<td>3,6%</td>
<td>1,2%</td>
<td>12,9%</td>
<td>100%</td>
</tr>
</tbody>
</table>

4.6 Sistema de información

4.6.1 Manejo de datos

En el ámbito de las DESAs, el sistema de información no está implementado y tampoco existen normas que la obliguen a hacerlo. Sin embargo, las oficinas descentralizadas reportan sus datos a las DESAs y estos a su vez al nivel central, para su procesamiento y preparación de los informes respectivos, los mismos que son de uso restringido y que no pudieron ser obtenidos para elaborar el presente informe.
En el ámbito de las EPS, las directivas sobre desinfección del agua de consumo humano y de control de la calidad del agua, obligan a las EPS a reportar; para el primer caso en forma trimestral y para el segundo caso en forma semestral, reportes sobre la calidad del agua referido al control de cloro residual y físico químico y bacteriológico. Adicionalmente en el mes de enero de cada año, las EPS deben remitir a SUNASS sus programas de limpieza y desinfección de reservorios y purgas en redes de distribución y semestralmente sus evaluaciones, en cumplimiento a la directiva sobre medidas inmediatas para evitar la propagación del cólera y otras enfermedades.

La mayoría de las EPS cuentan con equipos de cómputo donde ingresan sus datos, lo procesan y luego la remiten a la SUNASS. En este organismo regulador, el Laboratorio de Referencia y Control es la encargada de procesar y reportar a la Gerencia de Supervisión y Fiscalización para las acciones correspondientes. En el presente año ha programado sistematizar la información con apoyo de la Oficina de Sistema de Información.

4.6.2 Biblioteca virtual

En la página web de la DIGESA www.minsa.gob.pe/digesa no figura resultado alguno vinculado con el programa de vigilancia o evaluación de la calidad del agua para consumo humano. Sin embargo la Oficina General de Epidemiología (OGE) cuenta con una biblioteca virtual en salud (BVS) que se puede ingresar a través de la siguiente dirección www.minsa.oge.sld.pe y tener acceso a la información relacionada con las enfermedades hídricas prevalentes en el país.

La SUNASS, recientemente ha incorporado en su página web www.sunass.gob.pe un icono llamado extraned mediante el cual se puede tener acceso a la información sobre la del agua de consumo humano en las diferentes EPS del país.

El CEPIS cuenta con una biblioteca virtual de salud ambiental (BVSA), que a través de cualquiera de los portales: “calidad agua potable y saneamiento-Información Sectorial” o “calidad del agua”, se puede tener acceso a textos completos relacionados con la vigilancia y el control de la calidad del agua para consumo humano. La página web es www.cepis.ops-oms.org

4.7 Capacitación

En la actualidad el país cuenta con un total de 78 universidades (diciembre 2003), de los cuales 40 ofrecen un total de 62 de las siguientes carreras relacionadas al campo de Agua y Saneamiento: siete (07) de Ingeniería Ambiental, dos (02) de Ingeniería Sanitaria, treinta y uno (31) de Ingeniería Civil, quince (15) de Ingeniería Química y siete (07) de Ingeniería Agrícola, tal como lo evidencia el cuadro 19.

Con relación a las universidades que ofrecen maestrías relacionadas con Agua y Saneamiento son doce (12), de los cuales la mayoría ofrecen hasta 16 tipos de maestría, de los cuales cabe destacar los temas sobre Tratamiento del Agua, Gestión de la Calidad del Agua y Medición Ambiental, que vinculan de alguna manera sobre el tema de vigilancia y control de la calidad del agua.
Cuadro 19. Universidades por regiones según carreras profesionales

<table>
<thead>
<tr>
<th>Región</th>
<th>N°</th>
<th>Universidad</th>
<th>Ing. Ambiental</th>
<th>Ing. Sanitaria</th>
<th>Ing. Agrícola</th>
<th>Ing. Civil</th>
<th>Ing. Química</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancash</td>
<td>1</td>
<td>Universidad Nacional Santiago Antúnez de Mayolo</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Universidad Privada San Pedro</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Universidad Los Angeles de Chimbote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Universidad Nacional del Santa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arquipa</td>
<td>5</td>
<td>Universidad Nacional de San Agustín</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Universidad Católica de Santa María</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayacucho</td>
<td>7</td>
<td>Universidad Nacional San Cristóbal de Huamanga</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Universidad Nacional de Cajamarca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cusco</td>
<td>9</td>
<td>Universidad Privada de Jaen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Universidad Nacional del Callao</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Universidad Nacional San Antonio de Abad del Cusco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cajamarca</td>
<td>12</td>
<td>Universidad Nacional de Huancavelica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Universidad Nacional Hermilio Valdizan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Huanuco</td>
<td>14</td>
<td>Universidad Nacional de la Amazonia Peruana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Universidad Particular de Iquitos</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ica</td>
<td>16</td>
<td>Universidad Nacional San Luis Gonzaga de Ica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Junín</td>
<td>17</td>
<td>Universidad Peruana los Andes</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Universidad Nacional del Centro del Perú</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lambayeque</td>
<td>19</td>
<td>Universidad Privada Señor de Sipan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>La libertad</td>
<td>20</td>
<td>Universidad Nacional Pedro Ruiz Gallo</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Universidad Privada César Valdejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Universidad Nacional de Trujillo</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Universidad Alas Peruanas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Universidad Nacional Agraria La Molina</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Universidad Nacional de Ingeniería</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Universidad Nacional José Faustino Sánchez Carrión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Universidad Ricardo Palma</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Pontificia Universidad Católica del Perú</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Universidad Peruana de Ciencias Aplicadas</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Universidad Nacional Federico Villarreal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Universidad Nacional Mayor de San Marcos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moquegua</td>
<td>32</td>
<td>Universidad Particular de Moquegua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasco</td>
<td>33</td>
<td>Universidad Nacional Daniel Alcides Carrión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Piura</td>
<td>34</td>
<td>Universidad de Piura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Universidad Nacional de Piura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Puno</td>
<td>36</td>
<td>Universidad Andina Néstor Cáceres Velásquez</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>Universidad Nacional del Altiplano</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Martín</td>
<td>38</td>
<td>Universidad Nacional de San Martín</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tacna</td>
<td>39</td>
<td>Universidad Privada de Tacna</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Universidad Nacional Jorge Basadre Grohmann</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>Universidades</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>
Respecto a los institutos técnicos de ingeniería, de tres existentes uno de ellos ofrece cursos virtuales sobre tratamiento de agua.

Y con relación a otros organismos, el CEPIS desde 1975 viene divulgando mucha documentación técnica relacionado al tema de Agua y Saneamiento, de estos en el año 2003, cabe destacar dos importantes guías: una para la vigilancia y control de la calidad del agua de consumo humano y otra para elaborar normas de calidad del agua de bebida en los países. Asimismo eventualmente brinda cursos de capacitación para operadores, jefes de plantas e Ingenieros de las empresas de agua potable, en temas relacionados a Agua y Saneamiento.

Por su parte DIGESA, a solicitud de las DESAs ofrece seminarios, cursos cortos y talleres de capacitación impartidos en temas relacionados a control de la calidad del agua y otros.

SUNASS con apoyo de entidades cooperantes como son el gobierno japonés a través de su Agencia de Cooperación Internacional del Japón, JICA, y el programa PROAGUA-GTZ, de la cooperación técnica alemana, también ha realizado eventos de capacitación en temas relacionados al control de la calidad del agua, dirigidos a profesionales de las EPS.

Y en las EPS, sólo en las mayores realizan eventos de capacitación en temas relacionados con Agua y Saneamiento. Al respecto cabe destacar, que en SEDAPAL el personal operativo participa, según su especialidad, en eventos de capacitación denominados: Reunión de Avances, Resultados, Acciones y Recomendaciones (RARAR) y Conferencia de Avances, Resultados, Acciones y Reconocimiento (CARAR).

En general, se aprecia la falta de centros docentes y programas de capacitación para profesionales y técnicos en temas específicos relacionados a vigilancia y control de la calidad del agua.

5. **Información epidemiológica**

5.1 **Morbilidad/Mortalidad**

La prevalencia de diarrea en menores de cinco años es mayor en los niños de 1 a 4 años (6 a 23 meses); es decir, en el período en que los niños empiezan a recibir alimentación complementaria. A partir de esa edad, la prevalencia se reduce progresivamente.

En efecto, tal como se puede apreciar en el cuadro 20 y en la figura 1, el MINSA en el período de 1996 a 2002, atendió 6.4 millones de EDAS, de los cuales el 22% correspondió a niños de un año, el 41% a niños entre 1 y 4 años y el 37% a niños mayores de cinco años; asimismo registró un total 6.232 muertes causados por EDAS de estos el 31% correspondió a niños de un año; el 31% a niños entre 1 y 4 años y el 38% a niños mayores de cinco años. También del total de EDAS atendidos, el 96% recibió terapia de rehidratación oral.
Cuadro 20. Morbilidad y mortalidad de niños causadas por EDAS

<table>
<thead>
<tr>
<th>Años 1996 a 2002</th>
<th>< 1</th>
<th>1 a 4</th>
<th>5 a más</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbilidad por tipo de diarrea</td>
<td>1.376.243</td>
<td>2.647.057</td>
<td>2.353.688</td>
<td>6.376.988</td>
</tr>
<tr>
<td>Diagnóstico del estado de hidratación</td>
<td>1.334.704</td>
<td>2.565.435</td>
<td>2.259.976</td>
<td>6.160.115</td>
</tr>
<tr>
<td>Atenciones por EDA</td>
<td>1.611.420</td>
<td>3.030.738</td>
<td>2.770.602</td>
<td>7.412.760</td>
</tr>
<tr>
<td>Mortalidad por EDA</td>
<td>1.970</td>
<td>1.918</td>
<td>2.344</td>
<td>6.232</td>
</tr>
<tr>
<td>% morbilidad por tipo diarrea</td>
<td>21,58</td>
<td>41,51</td>
<td>36,91</td>
<td>100,00</td>
</tr>
<tr>
<td>% de rehidratación</td>
<td>96,98</td>
<td>96,92</td>
<td>96,02</td>
<td>96,60</td>
</tr>
<tr>
<td>% atenciones por EDA</td>
<td>21,74</td>
<td>40,89</td>
<td>37,38</td>
<td>100,00</td>
</tr>
<tr>
<td>% mortalidad por EDA</td>
<td>31,61</td>
<td>30,78</td>
<td>37,61</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Figura 1

En la figura 2, se aprecia que el número de casos en niños menores de 5 años, se ha incrementado de más de 500,000 registrados en el año 1996 a más de 600,000 casos en el año 2002, con tendencia a mantenerse en la misma cifra en el presente año. En comparación con los casos en niños mayores de cinco años, las cifras registradas en los mismos años fueron menores, tal como se muestra en la figura 2A.
Asimismo los mayores casos de EDAs registrados en el mismo período, con cifras que superan los 500,000, se presentaron en los Departamentos de Arequipa, Junín, Lima Norte, Lima Sur y Loreto; luego con cifras menores de 500,000 a 400,000 en los Departamentos de Ancash, Cusco, Lima ciudad y Lima Este y tal como se puede apreciar en el cuadro 21.

Cuadro 21. Número de casos de EDAs atendidos por el MINSA en el período de 1996 a 2002

<table>
<thead>
<tr>
<th>DIRECCIÓN DE SALUD</th>
<th>Nº DE CASOS DE EDAS EN < 1 AÑO</th>
<th>EDAS DE 1-4 AÑOS</th>
<th>EDAS EN > 5 AÑOS</th>
<th>EDAS EN < 5 AÑOS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCASH</td>
<td>59,640</td>
<td>117,489</td>
<td>111,749</td>
<td>177,129</td>
<td>466,007</td>
</tr>
<tr>
<td>APURIMAC</td>
<td>26,690</td>
<td>60,026</td>
<td>28,872</td>
<td>86,716</td>
<td>202,304</td>
</tr>
<tr>
<td>AREQUIPA</td>
<td>75,652</td>
<td>137,335</td>
<td>145,584</td>
<td>212,987</td>
<td>571,558</td>
</tr>
<tr>
<td>AYACUCHO</td>
<td>46,236</td>
<td>89,068</td>
<td>56,757</td>
<td>135,304</td>
<td>327,365</td>
</tr>
<tr>
<td>BAGUA</td>
<td>15,057</td>
<td>26,961</td>
<td>23,158</td>
<td>42,018</td>
<td>107,194</td>
</tr>
<tr>
<td>CAJAMARCA</td>
<td>24,567</td>
<td>47,749</td>
<td>34,591</td>
<td>72,316</td>
<td>179,223</td>
</tr>
<tr>
<td>CALLAO</td>
<td>23,339</td>
<td>47,280</td>
<td>77,701</td>
<td>70,619</td>
<td>218,939</td>
</tr>
<tr>
<td>CHACHAPOYAS</td>
<td>9,698</td>
<td>24,443</td>
<td>21,907</td>
<td>34,141</td>
<td>90,189</td>
</tr>
<tr>
<td>CHANKA</td>
<td>13,123</td>
<td>23,237</td>
<td>12,758</td>
<td>36,360</td>
<td>85,478</td>
</tr>
<tr>
<td>CHOTA</td>
<td>17,045</td>
<td>34,263</td>
<td>19,252</td>
<td>51,308</td>
<td>121,868</td>
</tr>
<tr>
<td>CUTERVO</td>
<td>12,140</td>
<td>26,541</td>
<td>12,062</td>
<td>38,681</td>
<td>89,424</td>
</tr>
<tr>
<td>CUZCO</td>
<td>59,590</td>
<td>108,901</td>
<td>66,004</td>
<td>168,491</td>
<td>402,986</td>
</tr>
<tr>
<td>HUANCAVELICA</td>
<td>41,353</td>
<td>82,414</td>
<td>32,281</td>
<td>123,767</td>
<td>279,815</td>
</tr>
<tr>
<td>HUANUCO</td>
<td>34,097</td>
<td>80,856</td>
<td>58,369</td>
<td>114,953</td>
<td>288,275</td>
</tr>
<tr>
<td>ICA</td>
<td>36,260</td>
<td>64,358</td>
<td>82,637</td>
<td>100,618</td>
<td>283,873</td>
</tr>
<tr>
<td>JAEN</td>
<td>36,875</td>
<td>64,591</td>
<td>46,823</td>
<td>101,466</td>
<td>249,755</td>
</tr>
<tr>
<td>JUNIN</td>
<td>63,975</td>
<td>145,390</td>
<td>84,328</td>
<td>209,365</td>
<td>503,058</td>
</tr>
<tr>
<td>LA LIBERTAD</td>
<td>70,289</td>
<td>123,494</td>
<td>117,227</td>
<td>193,783</td>
<td>504,793</td>
</tr>
<tr>
<td>LAMBAYQUE</td>
<td>53,080</td>
<td>83,869</td>
<td>85,812</td>
<td>136,949</td>
<td>359,710</td>
</tr>
<tr>
<td>LIMA CIUDAD</td>
<td>60,505</td>
<td>110,809</td>
<td>94,538</td>
<td>171,314</td>
<td>437,166</td>
</tr>
<tr>
<td>LIMA ESTE</td>
<td>52,830</td>
<td>102,861</td>
<td>123,851</td>
<td>155,691</td>
<td>435,233</td>
</tr>
<tr>
<td>LIMA NORTE</td>
<td>115,729</td>
<td>230,208</td>
<td>301,244</td>
<td>345,937</td>
<td>993,118</td>
</tr>
<tr>
<td>LIMA SUR</td>
<td>72,531</td>
<td>147,263</td>
<td>183,087</td>
<td>219,794</td>
<td>622,675</td>
</tr>
</tbody>
</table>
Tasa de incidencia de EDAS

Las mayores tasas de incidencia de EDAS x 1000 habitantes, según se puede apreciar en la figura 3, se registraron en el período de 1996 al 2002 en niños menores de cinco años; de estos, los de 1 año se incrementaron de 337.39 a 376.95 (12%), los de 1-4 años de 142.73 a 193.09 (74%) y los de cinco años de 182.3 a 230.3 (26%). En cambio en niños mayores de cinco años el incremento en las tasas de incidencia de EDAS fue de 10,7 a 14 x 1000 habitantes.

![Figura 3](image-url)

Figura 3

Fuente

MINSA- Dirección General de Salud de las Personas-Dirección Ejecutiva de Gestión Sanitaria-Informe Mensual de las Direcciones de Salud con cobertura de notificación al 100%- Años de 1996-2002
5.3 Consultas externas realizadas

Según el cuadro 20 y en la figura 4, en el período de 1,996 a 2,002, 7.4 millones de casos de EDAs, fueron motivos de consulta, de los cuales el 62% correspondió a niños menores de 4 - 1 años y menores de 1 año de edad y el 38% a niños mayores de cinco años.

Figura 4

Las diarreas agudas ocupan el tercer lugar de las consultas externas de los 10 grupos de patologías relacionadas, tal como se muestra en el cuadro 22. Se debe precisar que la enfermedad diarreica se encuentra asociada especialmente a la desnutrición, falta de higiene y a la mala calidad del agua.

Cuadro 22. Principales causas de consulta externa en establecimientos del MINSA, Perú 1997

<table>
<thead>
<tr>
<th>N° Orden</th>
<th>Diagnóstico (CIE-9)</th>
<th>Nº de consultas</th>
<th>%</th>
<th>% Acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rinofaringitis aguda</td>
<td>2.383.625</td>
<td>20,4</td>
<td>19,7</td>
</tr>
<tr>
<td>2</td>
<td>Enfermedades de los tejidos dentarios duros</td>
<td>1.111.359</td>
<td>9,5</td>
<td>29,2</td>
</tr>
<tr>
<td>3</td>
<td>Diarrea acuosa</td>
<td>973.143</td>
<td>8,3</td>
<td>37,5</td>
</tr>
<tr>
<td>4</td>
<td>Bronquitis y bronquiolitis aguda</td>
<td>723.739</td>
<td>6,2</td>
<td>43,7</td>
</tr>
<tr>
<td>5</td>
<td>Heridas</td>
<td>718.247</td>
<td>6,1</td>
<td>49,8</td>
</tr>
<tr>
<td>6</td>
<td>Infecciones de la piel y tejido celular subcutáneo</td>
<td>383.114</td>
<td>3,3</td>
<td>53,1</td>
</tr>
<tr>
<td>7</td>
<td>Parásitosis intestinal sin otra especificación</td>
<td>316.235</td>
<td>2,7</td>
<td>55,8</td>
</tr>
<tr>
<td>8</td>
<td>Otras enfermedades de la piel y tejido celular</td>
<td>311.659</td>
<td>2,7</td>
<td>58,5</td>
</tr>
</tbody>
</table>
En general, la enfermedad diarreica aguda (EDA), principalmente infecciosa, constituye un problema de salud pública en el Perú, siendo una de las principales causas de morbilidad y mortalidad en la niñez, especialmente en los niños menores de cinco años con una tasa de incidencia de 182,3 habitantes registrado en el año 1996 a 230.3 x 1000 habitantes en el año 2002. Estas enfermedades infecciosas intestinales junto con las infecciones respiratorias agudas (IRA) representan el 63% de los motivos de consulta externa en establecimientos del Sector Salud.

6. Conclusión

Las acciones de los sistemas de vigilancia y control de la calidad del agua realizada hasta aquí, no han sido efectivas como para que contribuya a disminuir los casos de las enfermedades de origen hídrico ya que la población en riesgo por la falta de acceso al agua o a la transmisión de enfermedades de origen hídrico, es crítico.

7. Recomendaciones

Se deben desarrollar proyectos orientados al fortalecimiento, y/o formulación e implementación de Programas de Vigilancia y Control de la Calidad del Agua de Consumo Humano debido a que:

- La DIGESA, como institución responsable del Ministerio de Salud para esta labor, no cuenta con un programa formal, limitándose a ejecutar principalmente evaluaciones aisladas del contenido de cloro residual, turbiedad, Coliformes Termotolerantes y en algunos casos excepcionales, la determinación de parámetros complementarios a través de las 34 DESAS existentes en el país las que reportan sus datos al nivel central. Esta labor se asemeja en gran medida a los programas de control de calidad por estar obviando la parte investigativa que es propia de los programas de vigilancia y destinado a evaluar la inocuidad del agua de bebida a través de la correlación con las enfermedades vinculadas con la calidad del agua para consumo humano.

- La SUNASS ha implementado el control de la calidad del agua, solamente en las empresas reconocidas por esta institución, encontrándose que tanto el número de parámetros como la frecuencia de muestreo no cumple con lo dispuesto por el Reglamento del año 1946. Los demás sistemas de abastecimiento tanto municipales como privados no se encuentran bajo programas de vigilancia e implementación de técnicas de control de la calidad del agua de consumo humano.
como juntas administradoras y organizaciones comunales, no realizan ningún tipo de determinación analítica estando a la espera que el Ministerio de Salud a través de la DIGESA la ejecute dentro de su programa de evaluación para conocer la calidad de agua que suministran.

- La SUNASS, en cumplimiento de sus responsabilidades fiscaliza la calidad del agua que suministran las 45 EPS reconocidas en el país. Al año 2002, la adecuada desinfección del agua alcanzó una efectividad del 98%, habiéndose presentado un 1,48% de las muestras contaminadas con Coliformes Totales y el 0,74% con Coliformes Termotolerantes (fecales). Respecto al control físico químico de agua, se ha determinado que existen problemas respecto al control de parámetros como son: turbiedad, nitratos, hierro, manganeso y aluminio, y a muy pequeña escala y focalizada en algunos sistemas de abastecimiento de agua, se ha determinado la presencia de arsenico, plomo, cadmio y mercurio.

8. Bibliografía

- Plan de Acción para Mejorar la Calidad y el Acceso al Agua Potable-Initiativa 47 Cumbre de Santa Cruz de la Sierra-Washington, D.C. Marzo 1998, OMS/OPS.
- Guías para Elaborar Normas de la Calidad de Agua de Bebida en los Países en Desarrollo de la OPS/OMS – F. Solsona – Lima 2002
- Análisis de la Situación de Salud en el Perú-MINSA/OGE/ASIS 2001