MANUAL DE MINIMIZACION, TRATAMIENTO Y DISPOSICION

“CONCEPTO DE MANEJO DE RESIDUOS PELIGROSOS E INDUSTRIALES PARA EL GIRO TEXTIL”

COMISIÓN AMBIENTAL METROPOLITANA

EN COLABORACIÓN CON:

SOCIEDAD ALEMANA DE COOPERACIÓN TÉCNICA (GTZ)
TÜV ARGE-MEX

Septiembre de 1998
AGRADOCEMIENTOS

Agradecemos la valiosa colaboración de las siguientes empresas del giro de la industria textil, sin las cuales no hubiera sido posible la elaboración del presente manual:

✓ Acabados Leorlen, S.A. de C.V.
✓ Albany Internacional, S.A. de C.V.
✓ American Textil, S.A. de C.V.
✓ Ardyssa, S.A. de C.V.
✓ Becktel, S.A. de C.V.
✓ Confec, S.A. (Cannon Mills, S.A. de C.V.)
✓ Cintas y Telas Elásticas, S.A. de C.V.
✓ Daniel’s Industrias, S.A. de C.V.
✓ Estampados Camarasa, S.A. de C.V.
✓ Estampados Aritau, S.A. de C.V.
✓ Industrias Golden, S.A. de C.V.
✓ Industrias Manufactureras de Tejido de Punto, S.A. de C.V.
✓ Industrias Modernas de la Confección, S.A. de C.V.
✓ Notable, S.A. de C.V.
✓ Proyecciones de la Moda, S.A. de C.V.
✓ Rovilan, S.A. de C.V.
✓ San Ildelfonso Fabrica de Tejidos de Lana, S.A. de C.V.
✓ Teñidos y Acabados Especiales, S.A. de C.V.
✓ Textiles ATA, S.A. de C.V.
✓ Tinturama, S.A. de C.V.
✓ Transcolor, S.A. de C.V.
✓ Hilmex, S.A. de C.V.
✓ Unidad Textil Puente, S.A. de C.V.
✓ Unger Fabrik México, S.A. de C.V.
✓ Valersy, S.A. de C.V.
También agradecemos la invaluable cooperación de los participantes inscritos dentro del “Seminario sobre Conceptos Empresariales para el Manejo y Minimización de Residuos Industriales”, por continuar participando en la realización de las visitas técnicas a las industrias y en la elaboración de los reportes que forman parte del presente manual.

Se agradece especialmente la colaboración del SIEMENS, por la donación de equipo de protección personal para los técnicos que realizaron las visitas industriales.

Asimismo, hacemos patente nuestro agradecimiento a las siguientes instituciones públicas, educativas y de investigación, así como cámaras industriales que apoyaron decididamente los trabajos para la integración de los manuales a través de sus distinguidos representantes y colaboradores.

- Procuraduría Federal de Protección al Ambiente
- Instituto Nacional de Ecología
- Centro Nacional de Investigación y Capacitación Ambiental
- Secretaria de Ecología del Estado de México
- Laboratorio de Química Analítica Ambiental, U.N.A.M.
- Universidad Autónoma Metropolitana, Azcapotzalco
- Confederación Nacional de Cámaras Industriales
- Cámara Nacional de la Industria de la Transformación
- Asociación Nacional de la Industria Química, A. C.
- Dirección General de Construcción y Operación Hidráulica del Distrito Federal
- Dirección General de Obras Publicas del Distrito Federal
- Laboratorio de Bacteriología y Fisicoquímica del Distrito Federal
INDICE

AGRADECIMIENTOS .. I
ABREVIACIONES .. IX
PROLOGO .. X

1. INTRODUCCIÓN .. 1
1.1 Datos estadísticos Giro Textil ... 1
1.2 Industrias consideradas para la elaboración del presente manual 2
1.3 Situación actual de manejo y/o disposición de residuos en las empresas mexicanas visitadas 4

2. BASES LEGALES PARA EL MANEJO DE RESIDUOS .. 9
2.1 Ley General del Equilibrio Ecológico y Protección al Ambiente 9
2.1.1 Reglamento de la LGEEPA en Materia de Residuos Peligrosos 12
2.2 Normas Oficiales Mexicanas .. 12
2.2.1 Caracterización de residuos peligrosos .. 12
2.2.2 Manejo de sustancias peligrosas ... 13
2.2.3 Protección y seguridad en áreas de trabajo ... 13
2.2.4 Almacenamiento, etiquetado y transporte de residuos peligrosos 14
2.2.5 Prevención y control de la contaminación del agua ... 16
2.2.6 Prevención y control de la contaminación atmosférica .. 16
2.2.7 Calidad de combustibles ... 16
2.2.8 Protección contra ruido .. 17

3. CONCEPTOS EMPRESARIALES PARA EL MANEJO INTEGRAL DE LOS RESIDUOS PELIGROSOS E INDUSTRIALES ... 18
3.1 Procedimiento .. 19
3.1.1 Análisis de la situación actual de la empresa ... 19
3.1.2 Identificación de los puntos y causas de la generación de residuos 23
3.1.3 Identificación de oportunidades de minimización y opciones de manejo 23
3.1.4 Monitoreo y evaluación del concepto de manejo de residuos .. 25

4. BREVE DESCRIPCIÓN DE LOS PRINCIPALES PROCESOS Y LOS TIPOS DE RESIDUOS GENERADOS ... 27
4.1 Elaboración de hilos ... 27
4.1.1 Cardado, estirado, peinado, veloz, hilado y enconado .. 27
4.2 Fabricación de tejidos .. 28
4.2.1 Urdido y tejido .. 28
4.3 Acabado .. 31
 4.3.1 Lavado y otras operaciones de limpieza (Pretratamiento) ... 31
 4.3.2 Blanqueo .. 33
 4.3.3 Teñido .. 33
 4.3.4 Post-tratamiento de los tejidos teñidos .. 43
 4.3.5 Estampado ... 43
 4.3.6 Confección ... 46

4.4 Tecnología utilizada en los procesos textiles .. 47

4.5 Laboratorio .. 48

4.6 Clasificación de los tipos de residuos de acuerdo a la normatividad vigente 49
 4.6.1 Residuos con número del INE ... 49
 4.6.2 Residuos con clave CRETIB ... 50
 4.6.3 Otros residuos ... 50
 4.6.4 Aguas residuales ... 50

5. MEDIDAS PARA EVITAR O MINIMIZAR LA GENERACIÓN DE RESIDUOS 52
 5.1 Medidas relativas a la organización .. 53
 5.2 Medidas relativas a los materiales ... 58
 5.3 Medidas relativas a los procesos ... 60
 5.4 Medidas relativas a las emisiones y/o residuos .. 61

6. VÍAS DE MANEJO, TRATAMIENTO Y DISPOSICIÓN FINAL DE RESIDUOS 68
 6.1 Almacenamiento interno .. 68
 6.2 Medidas de gestión y organizativas .. 68
 6.3 Medidas técnicas .. 69
 6.4 Etiquetado ... 71
 6.5 Transporte ... 72
 6.6 Costos del manejo de residuos .. 72
 6.7 Vías alternativas para el reciclaje, reuso, tratamiento y disposición final de residuos 74

7. FUENTES DE FINANCIAMIENTO ... 78
 7.1 FUNTEC ... 78
 7.1.1 Requisitos principales ... 79
 7.2 Nacional Financiera -NAFIN ... 79
 7.2.1 Operaciones de Crédito de segundo piso .. 79
 7.2.2 Operaciones de crédito de primer piso .. 80
Indice

7.2.3 Programa de Garantías ...80
7.2.4 Créditos a Tasa Fija...80
7.2.5 Programa NAFIN – PNUD para la modernización tecnológica ...81
7.2.6 ECIP- European Community Investment Partners ...81
7.2.7 NAEF–North America Environmental Fund ...81

8. CONTACTOS PARA MÁS INFORMACIÓN ... 82

9. BIBLIOGRAFÍA ... 84
Indice de tablas

Tabla 1.1-1. Número de establecimientos del giro textil...1
Tabla 1.1-2. Producción bruta anual para el giro textil a nivel nacional..2
Tabla 1.1-3. Producto interno bruto del giro textil a nivel nacional ..2
Tabla 1.2-1. Clasificación por tamaño de empresas, de acuerdo al número de empleados según SECOFI, y ubicación...3
Tabla 1.2-2. Fibras comúnmente utilizadas en la industria textil ..3
Tabla 1.3-1. Residuos reportados con mayor frecuencia..5
Tabla 1.3-2. Manejo de los residuos generados en el giro textil ...5
Tabla 3.1-1. Fuentes de información a considerar para elaborar un concepto empresarial de manejo de residuos...19
Tabla 3.1-2. Hoja de datos de residuos por instalación ..21
Tabla 3.1-3. Hoja de datos por residuo..21
Tabla 3.1-4. Lista detallada de los materiales empleados en toda la planta22
Tabla 3.1-5. Lista de residuos en toda la planta ..22
Tabla 3.1-6. Lista detallada de materia prima y materiales auxiliares en el área de producción “A”22
Tabla 3.1-7. Lista de residuos en el área de producción “A” ..22
Tabla 3.1-8. Instrumentación de un concepto empresarial de manejo de residuos............................25
Tabla 4.1-1. Residuos generados en los procesos de cardado, estirado, peinado, veloz, hilado y enconado..28
Tabla 4.2-1. Residuos generados en el urdido, tejido y zurcido ...30
Tabla 4.3-1. Procesos de pretratamiento ...32
Tabla 4.3-2. Residuos peligrosos generados en el pretratamiento...32
Tabla 4.3-3. Residuos peligrosos generados en el blanqueo...33
Tabla 4.3-4. Colorantes empleados para el teñido de diferentes fibras ...39
Tabla 4.3-5. Fases del teñido por agotamiento..39
Tabla 4.3-6. Métodos de oxidación más comunes..42
Tabla 4.3-7. Residuos peligrosos generados del proceso de teñido ..43
Tabla 4.3-8. Residuos peligrosos generados en el post-tratamiento (exprimido, suavizado, secado, termofijado y planchado) ..43
Tabla 4.3-9. Residuos peligrosos generados en el proceso de estampado...44
Tabla 4.3-10. Residuos generados en la confección ..46
Tabla 4.5-1. Residuos generados en el laboratorio ..48
Tabla 4.6-1. Residuos peligrosos que tienen asignado un número INE en la normatividad correspondiente...49
Tabla 4.6-2. Tipos de residuos clasificados por sus características CRETIB50
Tabla 4.6-3. Tipos de residuos a los que no se les asigna ningún número INE o clave CRETIB por no considerarse peligrosos ..50
Tabla 4.6-4. Consumos de agua (incluyendo el pretratamiento) ..50
Tabla 4.6-5. Fuentes importantes de contaminación en el agua residual de los procesos de pretratamiento, blanqueo, teñido, fijado, lavado y enjuague ...51
Tabla 5.2-1. Sugerencias para la substitución de sustancias químicas ..59
Tabla 5.3-1. Ahorros típicos de agua usando lavado a contra-corriente ..61
Tabla 5.4-1. Alternativas de cambios de procesos ..67
Tabla 6.6-1. Costos de eliminación de residuos generados por la industria textil73
Tabla 6.7-1. Métodos de disposición ...75
Indice de figuras

Figura 1.1-1. Distribución del tamaño de empresas del giro textil en la ZMCM ... 2
Figura 1.2-1. Secuencia productiva general en la industria textil ... 3
Figura 1.3-1. Residuos enviados a reciclaje externo, en las empresas visitadas .. 6
Figura 1.3-2. Residuos enviados al tiradero municipal/relleno sanitario, en las empresas visitadas 7
Figura 3.1-1. Ejemplo de un diagrama de flujo general en una industria textil ... 20
Figura 3.1-2. Esquema de manejo de residuos ... 24
Figura 3.1-1. Representación esquemática de los procesos del giro textil ... 27
Figura 4.2-1. Representación esquemática del proceso de hilado, materias empleadas y residuos generados .29
Figura 4.2-2. Representación esquemática del proceso de tejido, materias empleadas y residuos generados ..31
Figura 4.3-1. Representación esquemática del proceso de estampado y residuos generados 44
Figura 4.3-3. Representación esquemática de los procesos de acabado y residuos generados 45
Figura 4.3-4. Representación esquemática de los procesos de confección y residuos generados 47
Figura 5.1-1. Diversas posibilidades para prevenir la generación de residuos en la fuente 54
Figura 5.4-1. Reutilización de los baños de teñido de tonos claros a obscuros .. 64
Abreviaciones y acrónimos

CAM Comisión Ambiental Metropolitana
CIMARI Centro Integral para el Manejo de Residuos Industriales
COV Compuestos Orgánicos Volátiles
CRETIB Características que hacen a un residuo peligroso: Corrosivo, Reactivo, Explosivo, Tóxico, Inflamable, Biológico-Infeccioso
DBO Demanda Biológica de Oxígeno
DQO Demanda Química de Oxígeno
GTZ Agencia de Cooperación Técnica de Alemania
INE Instituto Nacional de Ecología
INEGI Instituto Nacional de Estadística, Geografía e Informática
ISO International Standarization Organization
(Nombración Internacional de Estandarización)
NOM Normas Oficiales Mexicanas
ONU Organización de las Naciones Unidas
SCT Secretaría de Comunicaciones y Transportes
SECOFI Secretaría de Comercio y Fomento Industrial
SEMARNAP Secretaría de Medio Ambiente, Recursos Naturales y Pesca
SCT Secretaría de Comunicaciones y Transportes
STPS Secretaría del Trabajo y Previsión Social
SOS Sólido en Sólido (Solid on Solid)
TA Abfall Reglamento Ambiental de Alemania
TÜV ARGE-MEX Comisión de Colaboración y Asesoría Técnica Alemana
USEPA United States Environmental Protection Agency (Agencia de Protección Ambiental de los Estados Unidos)
ZMCM Zona Metropolitana de la Ciudad de México
Prólogo

Mundialmente la protección al ambiente representa uno de los mayores retos del presente. En el caso de la Zona Metropolitana de la Ciudad de México, esto es especialmente importante por concentrar una de las mayores densidades poblacionales a nivel mundial y por contar con la zona industrial más importante del país, que a su vez generan una carga considerable de contaminantes al medio ambiente. La industria consciente de esto, se inclina en forma activa y preventiva hacia la protección del ambiente. En este marco, una de las áreas que causa cada vez más problemas y a la que hasta hace algunos años no se le había prestado la debida atención, es la del manejo de residuos y en especial de los residuos industriales peligrosos.

Un instrumento fundamental y efectivo para iniciar un manejo de residuos adecuado para evitar riesgos a la salud y efectos adversos en el ambiente, es el llamado “Concepto Empresarial de Manejo de Residuos”, cuyo objetivo primordial es optimizar el manejo interno de los residuos en la empresa y al mismo tiempo reducir los costos por concepto de tratamiento y disposición final de los mismos.

Considerando lo anterior la Comisión Ambiental Metropolitana (CAM) en colaboración con la Asociación de Cooperación Técnica de Alemania (GTZ Deutsche-Gesellschaft für Technische Zusammenarbeit) con el financiamiento por parte de la Secretaría Federal Alemana de Cooperación Económica y Desarrollo (BMZ Bundes Ministerium für Zusammenarbeit) y a través del TÜV ARGE-MEX, presenta este "Concepto de Manejo de Residuos Peligrosos e Industriales para el Giro Textil", que constituye un logro importante de los trabajos realizados en el marco de la colaboración técnica entre los gobiernos de México y Alemania. Es claro que este manual no sustituye el trabajo intensivo que se requiere para el desarrollo de un concepto empresarial específico para cada empresa, únicamente pretende ser un instrumento que respalde los esfuerzos en materia de manejo integral de residuos que han venido realizando el sector industrial y las instituciones de gobierno involucradas, ofreciendo una orientación clara sobre medidas específicas para la industria textil para prevenir y minimizar la generación de residuos, reusarlos, reciclarlos y tratarlos correcta y adecuadamente.

Este manual proporciona información a las empresas que trabajan con fibras naturales y sintéticas (desde la producción de hilo hasta la confección de prendas de vestir) presentando un panorama de las alternativas tecnológicas que actualmente existen para minimizar la generación de residuos. Algunas técnicas de prevención de la contaminación permiten obtener una mayor eficiencia, un aumento en las ganancias y, al mismo tiempo, una minimización de los impactos ambientales. La reducción en el uso de materia prima, la modificación de los procesos para reutilizar productos secundarios, una mejor organización y la sustitución de materiales por otros menos tóxicos, son algunas de las prácticas que pueden aplicarse para ello. Se espera que la información aquí presentada permita a las industrias, en colaboración con las autoridades, asociaciones y empresas que aprovechan, reciclan, tratan y confinan residuos, elaborar e instrumentar soluciones integrales.

De igual manera, el personal que colabora con las autoridades y asociaciones recibirían mediante este concepto por giro industrial, un instrumento de trabajo que les permita dar asesorías y elaborar estrategias de solución.
La información básica de este manual, dirigido a las empresas que trabajan las fibras naturales y sintéticas, está constituida por datos recabados durante las visitas a 25 empresas del giro textil y la evaluación de los conceptos empresariales de manejo de residuos resultantes, elaborados por expertos mexicanos capacitados en esta área. La evaluación de estos conceptos empresariales de manejo de residuos se realizó por expertos alemanes considerando los siguientes aspectos:

- insumos y procedimientos utilizados,
- materias residuales y residuos generados,
- reuso/reciclaje o disposición actuales de estas materias residuales y residuos, y
- medidas a corto, mediano y largo plazo que se puedan aplicar para mejorar la situación con respecto al manejo de los materiales residuales y residuos.

Con base en la información específica para la Zona Metropolitana de la Ciudad de México y considerando la bibliografía e información más reciente que existe sobre este giro, se elaboró el presente manual enfocado en las necesidades de la industria ubicada en esta zona del país.

Es necesario mencionar que, por protección de secretos de producción y derecho de confidencialidad de información; las alternativas y métodos aquí presentados no son de ninguna manera exhaustivos.

Asimismo, debe observarse que el objetivo del presente manual no es describir cada proceso utilizado en la industria textil. Por ello, para casos especiales o problemas específicos se recomienda consultar a los contactos proporcionados en el capítulo 8.

El presente manual es el quinto de una serie de seis que abarcan los giros; de fundición, metalmecánica, química, galvanoplastia, textil e impresión.
1. Introducción

1.1 Datos estadísticos Giro Textil

De acuerdo a datos registrados por el Instituto Nacional de Estadística, Geografía e Informática en el Censo Industrial de 1993, en México, el Subsector industrial 32 referente a textiles, prendas de vestir e industria del cuero se compone de 44,071 establecimientos (número total de empresas incluyendo fabricantes de ropa de piel), que representan el 2.25% de la industria manufacturera a nivel nacional. Este Subsector a su vez se divide en ramas de las cuales se consideran dentro del giro textil las siguientes:

- 3211: Industria textil de fibras duras y cordelería de todo tipo
- 3212: Hilado, tejeo y acabado de fibras blandas, excluye de punto
- 3213: Confección de materiales textiles, incluye la fabricación de tapices y alfombras de fibras blandas
- 3214: Fabricación de tejidos de punto
- 3220: Confección de prendas de vestir
- 3230: Industria del cuero, pieles y sus productos
- 3240: Industria del calzado

En este manual sólo se consideran los giros textiles que integran fibras blandas, desde la elaboración de hilo, hasta la confección de prendas de vestir, por lo que no se han incluido las ramas 3211, 3230 y 3240.

Como se observa en la tabla siguiente, en la Zona Metropolitana de la Ciudad de México (ZMCM) se encuentran instaladas 4,982 empresas del sector textil, que representan el 14.4 % de este giro a nivel nacional. Estas industrias emplazan en el Distrito Federal a 73,926 personas y en los municipios conurbados del Estado de México a 40,310 personas. La ZMCM reúne cerca del 26.7% del personal empleado en este giro a nivel nacional.

Tabla 1.1-1. Número de establecimientos del giro textil

<table>
<thead>
<tr>
<th>Rama</th>
<th>Denominación</th>
<th>Nacional</th>
<th>D.F.</th>
<th>Zona conurbada del Estado de México</th>
<th>% ZMCM respecto al nacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>3212</td>
<td>Hilado tejeo y acabado de fibras blandas, excluye de punto</td>
<td>5,467</td>
<td>278</td>
<td>183</td>
<td>8.4</td>
</tr>
<tr>
<td>3213</td>
<td>Confección de materiales textiles, incluye la fabricación de tapices y alfombras de fibras blandas</td>
<td>4,968</td>
<td>315</td>
<td>103</td>
<td>8.4</td>
</tr>
<tr>
<td>3214</td>
<td>Fabricación de tejidos de punto</td>
<td>1,632</td>
<td>343</td>
<td>133</td>
<td>29.2</td>
</tr>
<tr>
<td>3220</td>
<td>Confección de prendas de vestir</td>
<td>22,560</td>
<td>2,882</td>
<td>745</td>
<td>16.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>34,627</td>
<td>3,818</td>
<td>1,164</td>
<td>14.4</td>
</tr>
</tbody>
</table>

* Incluye las clases 321201, despepite y empaque de algodón; 321210, tejido de rafia sintética; 321212 y tejido de redes y paños para pescar de fibras blandas.

** Incluye las clases 321331, tejido a mano de alfombras y tapetes de fibras blandas y 321332, tejido a máquina de alfombras y tapetes de fibras blandas

*** Incluye las clases 322007, confección de prendas de vestir de cuero, piel y materiales sucedáneos para caballero; 322008, confección de prendas de vestir de cuero, piel y materiales sucedáneos para dama; 322013, fabricación de sombreros, gorras y similares; 322014, fabricación de sombreros, gorras y similares hechos de palma y otras fibras duras.
Cabe hacer mención que dentro de la tabla 1.1-1 se considera como referencia estadística el número total de establecimientos por rama; sin embargo, las clases indicadas en el texto al pie de la tabla no se consideraron dentro de las visitas realizadas para la elaboración del presente manual.

En la figura 1.1-1 se presenta un desglose por tamaño de las empresas para la Zona Metropolitana de la Ciudad de México, sin considerar las ramas 3211, 3230 y 3240. Esta división se ha realizado con base en la clasificación de SECOFI (Tabla 1.2-1).

En cuanto a los índices de producción para la industria manufacturera, de 1995 a 1997 se reportó un crecimiento respecto a la producción bruta para 1993 (año de referencia para el INEGI). Durante este periodo y como resultado de la crisis de 1994, en marzo 1995 hubo una reducción drástica del 28,1% en el índice de producción. Durante julio de 1997 el índice de producción presentó un crecimiento máximo del 31.9%.

Tabla 1.1-2. Producción bruta anual para el giro textil a nivel nacional

<table>
<thead>
<tr>
<th>Rama</th>
<th>Producción Bruta *</th>
<th>Índice de volumen físico de la producción respecto a 1993 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1993</td>
<td>1995</td>
</tr>
<tr>
<td>Hilado y tejidos de fibras blandas</td>
<td>12'127,014.9</td>
<td>-----</td>
</tr>
<tr>
<td>Hilado y tejido de fibras duras</td>
<td>339,283.7</td>
<td>94.7</td>
</tr>
<tr>
<td>Otras industrias textiles</td>
<td>8'852,776.4</td>
<td>-----</td>
</tr>
<tr>
<td>Prendas de vestir</td>
<td>10'462,659.5</td>
<td>-----</td>
</tr>
</tbody>
</table>

Fuente XIV Censo Industrial, 1993, INEGI. *Cifras anualizadas en miles de pesos.

Tabla 1.1-3. Producto interno bruto del giro textil a nivel nacional

<table>
<thead>
<tr>
<th>PIB anual*</th>
<th>1995</th>
<th>1996</th>
<th>1997 (1º trim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textiles, prendas de vestir e industria del cuero</td>
<td>18,237.4</td>
<td>21,429.1</td>
<td>21,429.1</td>
</tr>
</tbody>
</table>

1.2 Industrias consideradas para la elaboración del presente manual

La información obtenida para la elaboración del Manual del Giro Industrial Textil corresponde a 25 visitas realizadas en el sector textil a empresas ubicadas en la Zona Metropolitana de la Ciudad de México.

Sin embargo, para el análisis de la situación actual de manejo de los residuos en las empresas mexicanas visitadas presentado en el punto 1.3, sólo se consideraron 23 empresas ya que 2 no pudieron tomarse en cuenta para la evaluación en detalle por proporcionar información incompleta.

Las visitas realizadas correspondieron a empresas de hilado, tejido en fibras naturales y sintéticas, teñido, acabado, estampado y confección. Cabe hacer notar que en muchos casos las empresas realizan más de un proceso: como tejido, teñido y acabado, e incluso las primeras etapas de confección (corte). De estas
corresponden, un 22% pequeña, un 39% mediana y el 39% restante fueron grandes empresas.

La mayor proporción de las empresas visitadas se ubican en los municipios conurbados del Estado de México, como se puede observar en la tabla siguiente.

Tabla 1.2-1. Clasificación por tamaño de empresas, de acuerdo al número de empleados según SECOFI, y ubicación.

<table>
<thead>
<tr>
<th>Número de empleados</th>
<th>Tamaño empresa</th>
<th>Número empresas</th>
<th>Edo. Mex.</th>
<th>D.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>Micro</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>16 - 100</td>
<td>Pequeña</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>101 - 250</td>
<td>Mediana</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>> 250</td>
<td>Grande</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Los insumos utilizados, además de las materias primas de fibras naturales y sintéticas, incluyen materiales auxiliares y aditivos, como son: aceites minerales, almidones, gomas, peróxidos, colorantes, etc. Las fibras textiles que normalmente se utilizan en la industria textil son las siguientes:

Tabla 1.2-2. Fibras comúnmente utilizadas en la industria textil

<table>
<thead>
<tr>
<th>Fibras de origen natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetal a base de celulosa: algodón, lino, cáñamo, yute</td>
</tr>
<tr>
<td>Animal a base de proteínas: lana, seda, angora</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibras sintéticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A base de polímeros orgánicos naturales: rayón, acetato, triacetato</td>
</tr>
<tr>
<td>A base de polímeros orgánicos sintéticos: acrílicos, nylon, poliéster</td>
</tr>
</tbody>
</table>

El rango de procesos observados durante las visitas incluyeron desde la transformación de fibras naturales y sintéticas en hilos y telas, hasta la confección de prendas de vestir. Esto se lleva a cabo mediante procesos mecánicos, como por ejemplo el cardado, el tejido y el corte, y procesos físico-químicos, como el descubre, el blanqueado, el teñido y fijado. En la figura siguiente se muestra la secuencia productiva general en la industria textilera.

En el capítulo 4 se hace una breve descripción de los procesos más importantes o comunes dentro del giro industrial textil y los residuos que estos generan.

Figura 1.2-1. Secuencia productiva general en la industria textil
1.3 Situación actual de manejo y/o disposición de residuos en las empresas mexicanas visitadas

El área de estudio para la elaboración de este manual fue la Zona Metropolitana de la Ciudad de México, que comprende el Distrito Federal y 18 municipios conurbados del Estado de México. Esta zona es considerada como uno de los centros de población más grandes del mundo. En esta área residen 14,110,979a habitantes (1990) y se ubican más de 19 mil industriasb, las cuales se estima que generan alrededor de 2,122 miles de ton/año de residuos peligrososc.

La industria textil es un generador de residuos peligrosos debido a las características de sus procesos, a la toxicidad de sus residuos, así como por las cantidades considerables de aguas residuales generadas.

El total de residuos peligrosos reportados en las visitas de estas industrias es de 1,601,904 m3/año de aguas residuales provenientes de los procesos de pretratamiento, blanqueo, teñido y acabado; 462 ton/año de lodos de tratamiento de aguas residuales, 59 m3/año de aceites gastados, 790 piezas/año de envases y tambos usados en el manejo de materiales y residuos peligrosos y 771 ton/año de residuos sólidos municipales, entre otros.

Los procesos considerados como principales fuentes de generación de residuos peligrosos son: la pre-limpieza (descrude, mercerizado, etc.), el blanqueo, teñido y acabado. Sin embargo, una estimación aproximada de la generación para cada uno, no fue posible realizarla ya que pocas empresas llevan un registro del consumo de agua y sustancias empleadas por proceso.

Manejo de residuos peligrosos

El destino de estos residuos reportados por las empresas durante las visitas técnicas considera 8 opciones, las cuales se presentan a continuación:

- Almacenamiento temporal en planta
- Confinamiento controlado
- Drenaje municipal
- Reciclaje energético como combustible alterno
- Reuso/reciclaje
- Tiradero municipal o Relleno sanitario
- Tratamiento físicoquímico-biológico
- No indicado

Debido a la diversidad de los residuos en este giro, se optó por agruparlos considerando sus características químicas o físicas. En la tabla 1.3-1, se mencionan los grupos de residuos que se reportan con más frecuencia en las industrias visitadas, para la elaboración de este manual.

a Carpeta Con Información Estadística de las Principales Ciudades de México, Fundación Arturo Rosenbluth, (julio 1996) con datos tomados del Instituto Nacional de Estadística, Geografía e Informática (INEGI) para el conteo de 1995.

b D.G. de Promoción de las Micro, Pequeña y Mediana Empresas y Desarrollo Regional, con los datos del IMSS, abril de 1996.

c Dirección General de Materiales, Residuos y Actividades Riesgosas, INE; Programa para la Minimización y Manejo Integral de los Residuos Industriales en México 1996-2000, INE/SEMARNAP, 1996
1. Introducción

<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>% de aparición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite lubricante gastado</td>
<td>13</td>
</tr>
<tr>
<td>Agua residual de los procesos de pretratamiento, blanqueo, teñido y acabado</td>
<td>11</td>
</tr>
<tr>
<td>Cartón, papel y polietileno</td>
<td>12</td>
</tr>
<tr>
<td>Conos, carretes y bobinas de plástico y/o cartón</td>
<td>5.4</td>
</tr>
<tr>
<td>Envases o tambos vacíos usados en el manejo de sustancias y residuos peligrosos</td>
<td>7.2</td>
</tr>
<tr>
<td>Estopa, pelusa e hilos</td>
<td>8.1</td>
</tr>
<tr>
<td>Lodos de tratamiento de agua residual</td>
<td>3.6</td>
</tr>
<tr>
<td>Residuos de telas</td>
<td>14.5</td>
</tr>
<tr>
<td>Residuos sólidos municipales</td>
<td>18</td>
</tr>
<tr>
<td>Trapos y estopa con aceite</td>
<td>3.6</td>
</tr>
<tr>
<td>Otros</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

El rubro “otros” agrupa a residuos que son característicos de las empresas dedicadas a la elaboración de hilos y a la confección. Estos residuos son tarimas de madera (2,400 piezas/año), cuchillas metálicas de corte (144 piezas/año) y ganchos de plástico (110,000 piezas/año). También se incluyeron residuos metálicos “chatarra” (54 ton/año) y hollín de calderas (0.5 ton/año).

En la tabla 1.3-2 se muestran el manejo y los porcentajes totales de los residuos generados anualmente por las empresas visitadas.

<table>
<thead>
<tr>
<th>Destino</th>
<th>generación anual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacén temporal</td>
<td>0.02</td>
</tr>
<tr>
<td>Combustible alternno</td>
<td>2.75</td>
</tr>
<tr>
<td>Confinamiento controlado</td>
<td>0.03</td>
</tr>
<tr>
<td>Reciclaje/Reuso</td>
<td>21.2</td>
</tr>
<tr>
<td>Tiradero municipal/relleno sanitario</td>
<td>75.5</td>
</tr>
<tr>
<td>No indicado</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Algunas de las empresas visitadas se dedican principalmente al teñido y acabado de los materiales textiles, consumiendo cantidades considerables de agua en la elaboración de sus productos.

Se puede observar que las empresas que utilizan éstos procesos, reportan una generación total de 1'601,904 m³/año de aguas residuales. El volumen de agua que se vierte directamente al drenaje municipal sin tratamiento previo es de 861,937 m³/año del total de generación.

Generalmente el tratamiento de las aguas residuales consiste en procesos fisicoquímicos - biológicos y no todas las empresas visitadas realizan algunos de los siguientes métodos para tratar a los efluentes.

- **Tratamiento preliminar y primario:** comprenden métodos de igualación, neutralización y destoxificación.
- **Tratamiento secundario:** implica métodos de aireación, reducción y oxidación química, coagulación, filtración, evaporación y tratamiento biológico que se realiza mediante lodos activados, aeróbico y estanques estabilizadores.
- **Tratamiento terciario:** comprende procesos más complejos y por consiguiente más costosos. Utiliza estanques de estabilización, la adsorción con carbón activado, intercambio iónico (para remover sales, nitratos y fosfatos), ultrafiltración y ósmosis inversa.

Reciclaje/reuso

El reciclaje o reuso de los residuos generados por la empresa puede realizarse dentro de la empresa o bien enviarse a una empresa externa. Sin embargo, la gran mayoría de las empresas que reciclan/reusan los residuos internamente no llevan un registro de las cantidades reutilizadas, por lo cual, no fue posible realizar un análisis detallado de este manejo.
Como se puede observar en la tabla 1.3-2 el 21.2 % de los residuos generados recibe un reciclaje o reuso externo. Las cantidades de residuos peligrosos que reciben este manejo son mínimas y se trata principalmente de aceites lubricantes gastados (0.8 ton/año) y envases y tambos vacíos usados en el manejo de materiales y residuos peligrosos (670 piezas/año). En el caso de estos contenedores el reciclaje/reuso consiste en devolverlos a los proveedores o enviarlos a una empresa autorizada por el INE para acondicionarlos nuevamente.

Predomina el reciclaje o reuso de residuos industriales no peligrosos, esto es factible debido a que entre los principales residuos que se generan está el cartón y papel (87.7 ton/año), pelusas, estopa e hilos (124 ton/año), recortes de telas (202 ton/año), polietileno (12.6 ton/año), tarimas de madera (2400 piezas/año) y ganchos de plástico (110,000), para los cuales existe un mercado más atractivo de reciclaje.

Las tarimas, los ganchos y los envases y tambos vacíos que se envían a reciclaje no se encuentran representados dentro de la siguiente figura.

Reciclaje energético como combustible alterno

Las empresas que ofrecen los servicios de recolección y tratamiento de residuos peligrosos con elevado poder calorífico, son las encargadas de la elaboración de combustible alterno, para reaprovechar su potencial energético, en hornos de cemento.

Sin embargo, las empresas generadoras (en la mayoría de los casos) no conocen el destino final de los residuos con elevado poder calorífico, por lo cual, resulta difícil estimar la cantidad de residuos que reciben este tipo de manejo.

Sólo el 2.75 % (54 ton/a) del total de los residuos reportados en el giro se someten a reciclaje energético. Entre estos residuos están los siguientes:

a) Aceites gastados

b) Estopas impregnadas de aceite, solventes y colorantes

Confinamiento controlado

Las empresas visitadas reportan únicamente el envío anual de 0.5 toneladas (0.03 % del total de residuos generados) de residuos peligrosos a confinamiento controlado. Estos residuos son lodos de plantas de tratamiento de aguas residuales con contenido de metales pesados y hollín de calderas.

Almacenamiento temporal en planta

Las empresas generadoras de residuos generalmente los almacenan por varias semanas o por varios meses, hasta tener una cantidad considerable que les sea redituable para enviarlos a tratamiento.

Algunas de las industrias visitadas reportan el almacenamiento temporal de residuos en sus instalaciones, mientras deciden cuál
será el manejo de los mismos. Estos residuos son generalmente aceites y materiales impregnados y representan el 0.02 % (0.3 ton/año) de la generación total de los residuos reportados.

Tiradero/basurero municipal o relleno sanitario

El destino de los residuos generados no es ciertamente el óptimo en la mayoría de los casos, muchos de éstos están siendo dispuestos inadecuadamente en tiraderos o en rellenos sanitarios, especialmente aquellos en los que el reciclaje o reuso no es una práctica común, como es el caso de los residuos generados en equipos de control de emisiones y en plantas de tratamiento. En este contexto se incluye a los polvos y filtros del sistema extractor de aire, lodos provenientes del tratamiento de agua residual y del lavado de gases, etc.

De igual forma, estas prácticas de disposición final, se aplican a los residuos generados en la maquinaria, equipo y durante la limpieza de éstos (estopas, trapos y aserrín), así como los equipos de seguridad personal como guantes impregnados de aceite, filtros de mascarillas, etc. En cuanto a este tipo de residuos, cabe resaltar que en muchas ocasiones la industria no tiene cuantificado el volumen exacto sobre la generación y los datos proporcionados corresponden a correlaciones con la compra de estos materiales.

Otros residuos que también reciben éste manejo son los generados en las operaciones de manejo de materiales, incluyendo los envases, empaques y contenedores de sustancias auxiliares, químicos, colorantes y materia prima. La gran mayoría de estos materiales están considerados peligrosos en la normatividad y sin embargo sus envases o sacos no se disponen adecuadamente.

El 75.5% de la generación total de los residuos reportados por las industrias visitadas se disponen en el tiradero o relleno sanitario, los cuales generalmente son una mezcla de los siguientes residuos: lodos de la planta de tratamiento (462 ton/año), 285 ton/año de residuos industriales no peligrosos (pelusa, estopa, e hilos y recortes de telas,), residuos sólidos municipales (771 ton/año) y 5,808 piezas/año de residuos no peligrosos (cuchillas de corte, conos, carretes y bobinas de plástico y/o cartón).

Los porcentajes de los residuos que reciben este manejo se muestran en la siguiente figura, no se incluyen aquellas piezas que se envían al tiradero municipal/relleno sanitario no se encuentran representadas dentro de la figura.

Figura 1.3-2. Residuos enviados al tiradero municipal/relleno sanitario, en las empresas visitadas

Destino no indicado

El porcentaje de la generación total reportada de los residuos que tienen un destino no indicado es 0.5 % debido a que las empresas reportaron que se reciclaban o reutilizaban por algún tercero, pero no se proporcionaron los datos del mismo. Los residuos cuyo destino es no indicado son
principalmente aceites gastados (4 m3/año) y tambos usados en el manejo de materiales o residuos peligrosos (120 pzas/año).

Probablemente grandes cantidades de éstos residuos están siendo dispuestos en tiraderos clandestinos, rellenos sanitarios, en la red de alcantarillado o quemados inadecuadamente.

Cabe hacer notar que en muchos casos se tuvieron dificultades al recabar la información, principalmente en lo referente a los volúmenes generados de residuos. Esto se debió a que en general, las empresas que llevan un registro de los volúmenes generados y transportados de los residuos son sólo aquellas en donde el manejo lo realiza una compañía autorizada por el INE o cuando se obtiene un beneficio económico por concepto de venta de materiales para reciclaje.

Aunado a la problemática anterior, en muchos casos los residuos son mezclados y transportados por los camiones recolectores pertenecientes al municipio o delegación, o en otros casos por empresas particulares contratadas para la recolección de los residuos sólidos municipales. Por ello, el volumen de residuos peligrosos reportado, muchas veces no corresponde al volumen real generado y los costos reportados por manejo varían para un mismo tipo de residuo.

También se observó que el manejo interno de los residuos es inadecuado, ya que no cuentan con contenedores apropiados para el almacenamiento de los residuos peligrosos y en pocos casos éstos se almacenan en áreas que cumplen con los requisitos de seguridad establecidos en la normatividad; aunado a esto algunas empresas no cuentan con personal capacitado para su manejo. Asimismo, pocas empresas tienen instrumentadas medidas para la reducción en la fuente o minimización de los residuos generados.

En cuanto al manejo de efluentes, la mayoría de las empresas cuentan con sistemas de tratamiento de aguas residuales y con planes a mediano o largo plazo, algunas de ellas contemplan la instalación de plantas de tratamiento.

Es importante remarcar que algunas empresas que elaboran productos para exportación han obtenido una reducción de residuos y mejoras en el manejo de los mismos, debido a que se ha incrementado el control sobre los procesos. En algunos casos, también se han substituido aquellos materiales que no son aceptados en los países importadores, por otros materiales "ecológicos". Cabe hacer notar, que estas medidas se han orientado más por las condiciones del mercado que por el objetivo de reducir la generación de residuos.

Como medidas a futuro, las empresas también manifiestan la inquietud de enviar los residuos peligrosos que tienen almacenados temporalmente en planta a un confinamiento controlado. Sin embargo, pocos consideran las opciones de reducción de residuos (preventivas) antes de recurrir a medidas de tratamiento al final del tubo (de control).

Las medidas recomendadas para minimizar la generación de residuos (Capítulo 5) están dirigidas al incremento de la eficiencia de los procesos, al mantenimiento de las instalaciones, a la sustitución de materiales por aquellos que representen un menor riesgo a la salud y con los cuales se reduzca el volumen de los residuos peligrosos a disponer en el confinamiento controlado, a la modificación de los procedimientos utilizados y al manejo adecuado de los residuos, tanto interno como externo.
2. Bases legales para el manejo de residuos

2.1 Ley General del Equilibrio Ecológico y Protección al Ambiente

La Ley General del Equilibrio Ecológico y Protección al Ambiente (LGEEPA)\(^1\) de 1988 y modificada por decreto en diciembre de 1996, es el marco legal que fija las condiciones para la protección ambiental, así como la preservación y restauración del equilibrio ecológico. En su forma modificada esta ley hace especialmente énfasis en reforzar el carácter preventivo de la política ambiental, con el propósito de orientarla hacia un desarrollo sustentable. Entre otras, las reformas incorporan como instrumento de carácter preventivo y correctivo, disposiciones referidas a la auditoría ambiental y promueven la autorregulación y certificación voluntaria. En materia de residuos, materiales y riesgo ambiental, las modificaciones tienen el propósito de promover las políticas de minimización, reciclaje y recuperación de materiales secundarios o de energía, así como propiciar una gestión administrativa más eficiente.

De este marco genérico que establece la Ley, se desprenden diversos reglamentos y normas específicas en materia de protección ambiental del agua, aire y suelo, así como de la salud humana.

Debido a que los contaminantes pueden transferirse fácilmente de un medio a otro o a que los impactos ambientales pueden involucrar más de un medio (aire, agua, suelo), es necesario considerar las emisiones desde un punto de vista de multimedios. Por ello, a continuación se mencionan algunos aspectos relevantes de la LGEEPA en materia de protección ambiental y no únicamente los referentes a residuos peligrosos, los cuales requieren de importante consideración por parte de la industria textil.

El Artículo 3, en su fracción XXXI, del TÍTULO PRIMERO "Disposiciones Generales" de la LGEEPA define residuo como "cualquier material generado en los procesos de extracción, beneficio, transformación, producción, consumo, utilización, control o tratamiento cuya calidad no permita usarlo nuevamente en el proceso que lo generó". Asimismo la fracción XXXII define residuos peligrosos como "todos aquellos residuos, en cualquier estado físico, que por sus características corrosivas, reactivas, explosivas, tóxicas, inflamables o biológico-infecciosas (CRETIB), representen un peligro para el equilibrio ecológico o el ambiente."

El TÍTULO CUARTO de la LGEEPA es el referente a la Protección al Ambiente y contiene entre otras las siguientes disposiciones.

Capítulo II "Prevención y control de la contaminación de la atmósfera"

- Por medio de los Artículos 111-Bis y 113, quedan regulados y requieren de autorización de la Secretaría (SEMARNAP), la operación y el funcionamiento de fuentes fijas de jurisdicción federal que puedan emitir olores, gases o partículas sólidas o líquidas a la atmósfera. Para tal efecto deben cumplirse las Normas Oficiales Mexicanas correspondientes, y de más disposiciones reglamentarias que emanan de la LGEEPA.
Capítulo III "Prevención y control de la contaminación del agua y de los ecosistemas acuáticos"

- Por medio de los Artículos 120, 121 y 122 quedan sujetos a regulación federal o local y requieren de un tratamiento previo adecuado, las descargas de origen industrial, el vertimiento de residuos sólidos, materiales peligrosos y lodos provenientes del tratamiento de aguas residuales, así como las aguas residuales con contaminantes, a cualquier cuerpo y corriente de agua o en el suelo o subsuelo. Toda descarga deberá satisfacer las Normas Oficiales Mexicanas correspondientes.

Capítulo IV "Prevención y control de la contaminación del suelo"

- El Artículo 134.- I al III establece que corresponde al estado y a la sociedad evitar la contaminación del suelo y que deben ser controlados los residuos en tanto que constituyen la fuente principal de contaminación del suelo, incorporando las medidas que previenen y reducen su generación y las técnicas para su reuso y reciclaje así como la regulación eficiente del manejo y disposición final de los mismos.

- Por medio del artículo 135, la generación, manejo y disposición final de residuos sólidos, industriales y peligrosos, así como en las autorizaciones y los permisos que para tal efecto se otorguen, quedan sujetos a los criterios para prevenir y controlar la contaminación del suelo.

- El Artículo 140 establece que "la generación, el manejo y la disposición final de los residuos de lenta degradación deberán sujetarse a lo que se establezca en las Normas Oficiales Mexicanas."

- El Artículo 144 hace referencia a las restricciones arancelarias y no arancelarias relativas a la importación y exportación de materiales peligrosos.

Capítulo V "Actividades consideradas como altamente riesgosas"

- El Artículo 147 establece que las actividades industriales, comerciales o de servicios altamente riesgosas deben realizarse con apego a esta Ley así como a los reglamentos y normas correspondientes. Quien realice este tipo de actividades debe además presentar un estudio de riesgo ambiental para su aprobación por las autoridades correspondientes.

Capítulo VI "Materiales y residuos peligrosos"

- El manejo de materiales y residuos peligrosos, incluyendo su uso, recolección, almacenamiento, transporte, reuso, reciclaje, tratamiento y disposición quedan sujetos a lo establecido en la presente ley, en el reglamento en materia de residuos peligrosos y las normas oficiales mexicanas correspondientes.
• El Artículo 151 otorga la responsabilidad del manejo y disposición final de los residuos peligrosos a quien los genera. En el caso de que se contrate los servicios de manejo y disposición final de los residuos peligrosos con empresas autorizadas por la Secretaría y los residuos sean entregados a dichas empresas, la responsabilidad por las operaciones será de éstas independientemente de la responsabilidad que, en su caso, tenga quien los generó. Quienes generen, reusen o reciclen residuos peligrosos, deberán hacerlo del conocimiento de la Secretaría en los términos previstos en el Reglamento de esta Ley.

• El Artículo 152 Bis establece que cuando la generación, el manejo o la disposición final de materiales o residuos peligrosos, produzca contaminación del suelo, los responsables de dichas operaciones deberán llevar a cabo las acciones necesarias para recuperar y restablecer las condiciones del mismo, con el propósito de que pueda ser destinado a alguna de las actividades previstas en el programa de desarrollo urbano u ordenamiento ecológico aplicable para el predio o zona respectiva.

• El Artículo 153 establece las restricciones en la importación o exportación de materiales o residuos peligrosos.

Capítulo VIII "Ruido, vibraciones, energía térmica y luminica y contaminación visual"

• Por medio del Artículo 155 quedan prohibidas las emisiones de ruido, vibraciones, energía térmica y luminica y la generación de contaminación visual, en cuanto rebasen los límites máximos establecidos en las normas oficiales mexicanas. Asimismo, establece que en la construcción de obras o instalaciones que generen energía térmica o luminica, ruido o vibraciones, así como en la operación o funcionamiento de las existentes deberán llevarse a cabo acciones preventivas y correctivas para evitar los efectos nocivos de tales contaminantes en el equilibrio ecológico y el ambiente.

• De acuerdo al Artículo 156 se establecerán procedimientos de prevención y control y se fijarán los límites de emisión respectivos en las Normas Oficiales Mexicanas.

De la Ley General del Equilibrio Ecológico y la Protección al Ambiente se desprenden asimismo las siguientes leyes y reglamentos:

• Ley Federal de Derechos en Materia de Agua - 1997
• Ley de Aguas Nacionales - 1994
• Reglamento para la Prevención y Control de la Contaminación de Aguas - 1988
• Reglamento de la Ley de Aguas Nacionales - 1994
• Reglamento en Materia de Residuos Peligrosos – 1988

La LGEEPA, por medio del artículo 151 capítulo VI, otorga:

"la responsabilidad del manejo y disposición final de los residuos peligrosos corresponde a quien los genera" y a las empresas que los traten
2.1.1 Reglamento de la LGEEPA en Materia de Residuos Peligrosos

El Reglamento de la LGEEPA en Materia de Residuos Peligrosos (de 1988), incluye autoridades, responsabilidades, definición de términos y procedimientos de generación, manejo, importación y exportación, control y sanciones a considerar en la gestión de residuos peligrosos. Los requisitos específicos se presentan a nivel de Normas Oficiales Mexicanas.

El Artículo 8 del Reglamento establece las obligaciones del generador de residuos peligrosos para darles un manejo integral adecuado.

Los requerimientos técnicos y organizativos generales relacionados al almacenamiento temporal de los residuos peligrosos, se enlistan en los artículos 3, 8 IV y VII, 10, 14, 15, 16, 17, 18, 19 y 21. A nivel nacional, la Secretaría del Medio Ambiente, Recursos Naturales y Pesca (SEMARNAP), a través del Instituto Nacional de Ecología (INE), es la autoridad en materia de los residuos peligrosos, especialmente para las autorizaciones correspondientes al manejo de residuos peligrosos incluyendo los trámites administrativos y legales necesarios. Actualmente se está trabajando sobre un esquema descentralizado que permita una responsabilidad compartida entre las autoridades estatales y la federal.

2.2 Normas Oficiales Mexicanas

A continuación se presentan las Normas Oficiales Mexicanas (NOM) ambientales más importantes para la industria textil. La normatividad ambiental se encuentra en activa revisión y complementación con el fin de contar con un marco normativo más definido, abarque un mayor número de actividades que puedan ocasionar daños al medio ambiente o presentar un riesgo a la salud humana. Por ello, se recomienda mantenerse al tanto de la nueva normatividad y cambios en la existente, expedidos por el Instituto Nacional de Ecología (INE) y publicados en el Diario Oficial. Más adelante se presenta un listado de los proyectos de normas de interés para la industria, sobre los que las autoridades (INE, SCT, SPTS, etc.) se encuentran trabajando.

2.2.1 Caracterización de residuos peligrosos

Sobre las características de los residuos peligrosos rigen las siguientes normas:

- NOM-052-ECOL-1993, establece las características de los residuos peligrosos, el listado de los mismos y los límites que hacen a un residuo peligroso por su toxicidad al ambiente. Norma de observancia obligatoria en la definición y clasificación de residuos peligrosos.

Los residuos considerados peligrosos se clasifican por giro industrial y proceso, así como por fuente no específica, incluyendo la clave CREITB y Número del INE correspondientes (anexos 2, 3 y 4 de la norma). Los residuos peligrosos que no están incorporados en estos listados deben ser clasificados de acuerdo a sus características CREITB. En el anexo 5 de la norma se presentan las características del lixiviado, determinadas en la prueba de extracción (PECT), que hacen peligroso a un residuo por su toxicidad al ambiente. Cuando el residuo sobrepasa los límites máximos permitidos aquí listados, se califica como peligroso.

Esta norma se encuentra en revisión y constará en un futuro de dos partes. La primera parte contendrá las disposiciones legales sobre las características y procedimientos de identificación y clasificación de los residuos peligrosos y la segunda (NOM-052BIS-ECOL-) incluirá el listado para la clasificación de materiales y residuos peligrosos.
2. Bases legales para el manejo de residuos

- **NOM-053-ECOL-1993**, establece el procedimiento para llevar a cabo la prueba de extracción para determinar los constituyentes que hacen a un residuo peligroso por su toxicidad al ambiente. Norma de observancia obligatoria en la generación y el manejo de residuos peligrosos.

- **NOM-054-ECOL-1993**, establece el procedimiento para determinar la incompatibilidad entre dos o más residuos considerados como peligrosos por la norma oficial NOM-052-ECOL-1993, para evitar la mezcla de tales residuos que por sus características físico-químicas son incompatibles. Norma de observancia obligatoria en la generación y el manejo de residuos peligrosos.

2.2.2 Manejo de sustancias peligrosas

La Secretaría de Trabajo y Previsión Social ha emitido el siguiente reglamento y normas en materia de seguridad e higiene y medio ambiente laboral que deben ser consideradas en el manejo de sustancias peligrosas.

Reglamento General de Seguridad e Higiene en el Trabajo: disposiciones generales sobre medidas de prevención y protección, así como sistemas y equipos para el combate de incendios.

2.2.3 Protección y seguridad en áreas de trabajo

- **NOM-001-STPS-1993**, relativa a las condiciones de seguridad e higiene en los edificios, locales, instalaciones y áreas en los centros de trabajo.

- **NOM-004-STPS-1993**, sistema de protección y disposición de seguridad en la maquinaria, equipos y accesorios en los centros de trabajo.

- **NOM-005-STPS-1993**, relativa a las condiciones de seguridad en los centros de trabajo para el almacenamiento, transporte y manejo de **sustancias inflamables y combustibles**.

- **NOM-008-STPS-1993**, relativa a las condiciones de seguridad e higiene para la producción, almacenamiento en los centros de trabajo.

- **NOM-009-STPS-1993**, relativa a las condiciones de seguridad e higiene para el almacenamiento, transporte y manejo de **sustancias corrosivas, irritantes y tóxicas** en los centros de trabajo.

- **NOM-010-STPS-1994**, relativa a las condiciones de seguridad e higiene en los centros de trabajo donde se produzcan, almacenen o manején **sustancias químicas capaces de generar contaminación** en el medio ambiente laboral.
• **NOM-011-STPS-1994**, relativa a las condiciones de seguridad e higiene en los centros de trabajo donde se genere ruido.

2.2.4 Almacenamiento, etiquetado y transporte de residuos peligrosos

Los requerimientos técnicos y organizativos para el almacenamiento temporal de residuos peligrosos dentro de las empresas generadoras se derivan del Reglamento en Materia de Residuos peligrosos (ver capítulo 2.1.1).

Por otro lado, la Secretaría de Comunicaciones y Transportes ha emitido el siguiente reglamento y normas al respecto:

• **REGLAMENTO SCT**: Reglamento para el transporte de materiales y residuos peligrosos.

Para el almacenamiento y transporte de residuos peligrosos deben observarse las siguientes normas:

• **NOM-002-SCT2-1994**, norma para identificar y clasificar las substancias y materiales peligrosos más usualmente transportados, de acuerdo a clase, división de riesgo, riesgo secundario, número asignado por la Organización de las Naciones Unidas, así como las disposiciones especiales a que deberá sujetarse el transporte de substancias y materiales y el método de envase y embalaje. Esta norma es de observancia obligatoria para los expedidores, transportistas y destinatarios de las substancias, materiales y residuos peligrosos, que transitan por las vías generales de comunicación terrestre.

• **NOM-005-SCT2-1994**, información de emergencia para el transporte terrestre de sustancias, materiales y residuos peligrosos que establecen los datos y descripción de las especificaciones que debe contener la información de emergencia en transportación para el caso de incidente o accidente.

• **NOM-006-SCT2-1994**, establece las disposiciones básicas que deben cumplirse para la revisión diaria de las unidades destinadas al autotransporte de substancias, materiales y residuos peligrosos por parte del conductor para asegurarse que estas se encuentran en buenas condiciones mecánicas y de operación. Norma de observancia obligatoria para los autotransportistas y conductores de las unidades que transportan substancias, materiales y residuos peligrosos por las vías generales de comunicación terrestre.

• **NOM-010-SCT2-1994**, establece las disposiciones de compatibilidad y segregación que deben aplicarse para el almacenamiento y transporte de substancias, materiales y residuos peligrosos, a fin de proteger las vías generales de comunicación y la seguridad de sus usuarios. Norma de aplicación obligatoria para los expedidores, transportistas y destinatarios de las substancias, materiales y residuos peligrosos que transitan por las vías generales de comunicación terrestre.

• **NOM-011-SCT2-1994**, establece las disposiciones a que deberá sujetarse el transporte de substancias, materiales y residuos peligrosos de las clases 2, 3, 4, 5, 6, 8 y 9, en cantidades limitadas, a fin de proteger las vías generales de comunicación y la seguridad de sus usuarios. Norma de aplicación obligatoria para los expedidores, transportistas y destinatarios de las substancias, materiales y residuos peligrosos que transitan por las vías generales de comunicación terrestre.

• **NOM-019-SCT2-1994**, establece las disposiciones generales para la limpieza y control de remanentes de las unidades
que transportan materiales y residuos peligrosos. Norma de observancia obligatoria para los expedidores, transportistas, destinatarios y responsables de los centros de lavado o limpieza.

- **NOM-021-SCT2-1994**, disposiciones generales para **transportar otro tipo de bienes** diferentes a las sustancias, materiales y residuos peligrosos en unidades destinadas al traslado de materiales y residuos peligrosos.

- **NOM-024-SCT2-1994**, establece las especificaciones para la **construcción y reconstrucción de los envases y embalajes** que se utilizan para la transportación de las sustancias, materiales y residuos peligrosos, así como los métodos de prueba a que son sometidos.

- **NOM-028-SCT2-1994**, establece las disposiciones especiales para determinar el grupo de riesgo de envase y embalaje de las sustancias y residuos peligrosos de la clase 3 **líquidos inflamables** transportados. Norma de aplicación obligatoria para los expedidores, transportistas y destinatarios de las sustancias, materiales y residuos peligrosos de la clase 3 líquidos inflamables.

- **NOM-043-SCT2-1994**, establece la información fundamental que debe contener el **Documento de Embarque**, relativa a la designación oficial del transporte, los riesgos de las sustancias, materiales y residuos peligrosos que se presenten para su transportación terrestre y demás datos necesarios para su correcta identificación. Norma de observancia obligatoria para los fabricantes o expedidores, generadores, transportistas y destinatarios de las sustancias, materiales y residuos peligrosos.

Asimismo, para el transporte de residuos peligrosos es necesario cumplir con las siguientes normas de **etiquetado/identificación**:

- **NOM-003-SCT2-1994**, establece las características, dimensiones de símbolos y colores de las **etiquetas** que deben tener todos los envases y embalajes, que identifiquen los riesgos que representan durante su transporte y manejo los materiales y residuos peligrosos. Norma de aplicación obligatoria para los expedidores, transportistas y destinatarios de las sustancias, materiales y residuos peligrosos que transitan por las vías generales de comunicación terrestre.

- **NOM-004-SCT2-1994**, establece las **características y dimensiones de los carteles** que deben portar los camiones, las unidades de arrastre, contenedores cisterna y recipientes intermedios para granel y demás unidades de autotransporte y de ferrocarril, que identifiquen las sustancias, materiales y residuos peligrosos que se transportan, los cuales indiquen los riesgos que representan durante su traslado. Norma de observancia obligatoria para los expedidores, transportistas y destinatarios de las sustancias, materiales y residuos peligrosos que transitan por las vías generales de comunicación terrestre.

- **NOM-007-SCT2-1994**, establece las características y especificaciones que se deben cumplir para el **marcado de envases y embalajes** destinados al transporte terrestre de sustancias y residuos peligrosos. Norma de aplicación obligatoria para los expedidores, transportistas y destinatarios de las sustancias y residuos peligrosos, así como de los fabricantes de envases y embalajes, y responsables de la construcción y reconstrucción de los envases y embalajes que se utilizan para
la transportación de substancias, materiales y residuos peligrosos.

2.2.5 Prevención y control de la contaminación del agua

- **NOM-001-ECOL-1996**, establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales.

- **NOM-O31-ECOL-1993**, establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales provenientes de la industria, actividades agroindustriales, de servicios y el tratamiento de aguas residuales a los sistemas de drenaje y alcantarillado urbano o municipal. La presente norma es de observancia obligatoria para los responsables de las descargas de aguas residuales provenientes de la industria, actividades agroindustriales, de servicios y el tratamiento de aguas residuales a los sistemas de drenaje y alcantarillado urbano o municipal.

2.2.6 Prevención y control de la contaminación atmosférica

Las emisiones atmosféricas en fuentes fijas están reguladas por las normas:

- **NOM-002-ENER-1995**, sobre la eficiencia técnica de calderas, especificaciones y procedimientos de pruebas.

- **NOM-043-ECOL-1993**, establece los niveles máximos permisibles de emisión a la atmósfera de **partículas sólidas** provenientes de fuentes fijas.

- **NOM-085-ECOL-1994**, contaminación atmosférica para fuentes fijas que utilizan combustibles fósiles sólidos, líquidos o gaseosos o cualquiera de sus combinaciones, que establece los niveles máximos permisibles de emisión a la atmósfera de **humos, partículas suspendidas totales, bióxido de azufre y óxidos de nitrógeno**, y los requisitos y condiciones para la operación de los equipos de calentamiento indirecto por combustión, así como los niveles máximos permisibles de emisión de bióxido de azufre en los equipos de calentamiento directo por combustión.

2.2.7 Calidad de combustibles

Con la finalidad de reducir el impacto al ambiente derivado del uso de combustibles, la calidad de los mismos está regulada por:

- **NOM-051-ECOL-1993**, establece el nivel máximo permisible en peso de **azufre**, en el combustible líquido gasóleo industrial que se consume por las fuentes fijas en la Zona Metropolitana de la Ciudad de México.

- **NOM-086-ECOL-1994**, que establece la **calidad ecológica** de los combustibles fósiles líquidos o gaseosos que se usan en las fuentes fijas y móviles.

- **NOM-EM-118-ECOL-1995** (**EMERGENTE**), que establece las especificaciones de protección ambiental que debe reunir el **gas licuado de petróleo** que se utiliza en las
fuentes fijas ubicadas en la Zona Metropolitana de la Ciudad de México.

2.2.8 Protección contra ruido

Las medidas de protección contra ruido se encuentran regidas por las siguientes normas:

- **NOM-081-ECOL-1994**, establece los límites máximos permisibles de emisión de ruido de las fuentes fijas y su método de medición.

- **NOM-011-STPS-1993**, relativa a las condiciones de seguridad e higiene en los centros de trabajo donde se genere ruido.

La actualización de las Normas Oficiales Mexicanas (NOM) es un proceso continuo, por lo que es fundamental que los generadores, transportistas y quienes se dediquen al manejo, tratamiento y disposición de residuos industriales se mantengan informados y actualizados en este sentido.

Las NOM y modificaciones se publican en el Diario Oficial de la Federación.

Para mayores informes referirse a los contactos listados en el capítulo 8.
3. Conceptos Empresariales para el Manejo Integral de los Residuos Peligrosos e Industriales

El principio de cualquier política de gestión de residuos tiene que ser evitar la generación. Esto es, impulsar a las medidas de prevención de la generación de residuos antes de instrumentar medidas de tratamiento o manejo al “final de tubo". Sin embargo, generalmente no es posible lograr una generación “cero" ya que siempre existirá una determinada cantidad de residuos, que deben ser manejados de forma adecuada, de acuerdo al volumen generado y a la peligrosidad de los mismos. Resultado de esto surge el concepto de **minimización de residuos**, que involucra la reducción del volumen y/o peligrosidad de los residuos en la fuente de su generación.

La aplicación de una política de gestión ambiental de residuos involucra un manejo integral, que incluye beneficios no sólo en el aspecto de protección ambiental sino también económico, resultando en una reducción de costos en beneficio para la empresa. Algunos de éstos costos son el de materias primas y los costos de transporte, manejo, tratamiento y/o disposición final de los residuos, entre otros. Aunado a esto, también pueden obtenerse beneficios en cuanto al cumplimiento de la normatividad, reducción del riesgo a los trabajadores, incremento en la competitividad y prestigio de la empresa.

Uno de los instrumentos con que se cuenta para elaborar un plan de minimización y manejo de residuos es el “**Concepto Empresarial de Manejo Integral de Residuos Peligrosos e Industriales**". Este concepto presenta para las empresas una estrategia para identificar e instrumentar medidas de minimización y manejo de residuos generados que no se pueden minimizar.

Algunos de los aspectos más importantes que se tomaron en cuenta en el desarrollo del Concepto Empresarial para el Manejo Integral de los Residuos se presentan a continuación:

- Los tipos de residuos generados
- La cantidad de residuos generados
- El tipo de manejo y costos generados
- Las posibilidades de minimización

El desarrollo de un concepto empresarial de manejo integral de los residuos peligrosos e industriales se basa no sólo en la información referente al volumen y tipo de residuos, sino también en aquellos datos que sean de suma importancia para la economía de una empresa (por ejemplo, costos de transporte, tratamiento, disposición final, etc.). El resumen de los costos reales del manejo de los residuos y el análisis de las posibilidades de ahorro de costos por la instrumentación de medidas de minimización, representa un enorme incentivo financiero para que las compañías instrumenten técnicas de minimización de residuos.

Considerando que la tendencia de los costos para el manejo y disposición de residuos en México va en aumento, el desarrollo e instrumentación de este concepto es una herramienta importante de planeación económica para las empresas y también un instrumento eficiente de autorregulación en la gestión de residuos.

En Alemania los Conceptos empresariales para el manejo de residuos son de uso obligatorio para toda empresa que genere más de 2 ton/año de residuos peligrosos o de residuos industriales peligrosos.
3. Conceptos empresariales para el manejo integral de los residuos peligrosos e industriales

3.1 Procedimiento

A continuación se enlistan los puntos básicos para elaborar un concepto empresarial de manejo de residuos y su estructura normal.

1. Análisis de la situación actual de la empresa.

2. Identificación de los puntos en los cuales se generan residuos peligrosos o residuos no peligrosos en gran volumen.

3. Identificación y evaluación de las oportunidades de minimización de residuos; y de las medidas de manejo para los residuos que no ha sido posible reducir.

4. Monitoreo y evaluación del concepto empresarial de manejo de residuos.

3.1.1 Análisis de la situación actual de la empresa

Como primera tarea se encuentra un análisis detallado del estado actual de la empresa con respecto a las cantidades y componentes de cada uno de los diferentes flujos de materiales y residuos. Para realizar este diagnóstico la empresa debe recopilar toda aquella información que pueda servir como base para realizar un análisis cualitativo y cuantitativo de los materiales empleados y los residuos generados (tabla 3.1-1).

Este diagnóstico del estado actual de la empresa constituye la base para elaborar el Concepto Empresarial para el Manejo Integral de Residuos Peligrosos e Industriales, y para la toma de decisiones con respecto a las medidas necesarias para minimizar la generación de residuos, tomando en cuenta los costos correspondientes. Una reducción de la cantidad de residuos y de los costos de manejo en las empresas sólo se logra si se conocen los diferentes pasos del proceso dentro de cada una de las etapas de producción.

Tabla 3.1-1. Fuentes de información a considerar para elaborar un concepto empresarial de manejo de residuos

- Registros de los procesos de manejo de residuos utilizados, usando documentos de contaduría
- Registros del manejo dentro de la empresa de todo tipo de residuos desde su lugar de generación hasta su destino, incluyendo la ubicación de los puntos de recolección y almacenamiento temporal, considerando tanto los peligrosos como los residuos industriales no peligrosos
- Bitácoras de los almacenes temporales de residuos peligrosos de la empresa
- Recopilar:
 - Manifiestos para Empresas Generadoras de residuos peligrosos
 - Manifiestos de entrega, transporte y recepción de residuos peligrosos, incluyendo el Número de Registro de Autorización de la SEMARNAP de empresa destinataria
 - Reporte Semestral de Residuos Peligrosos enviados para su reciclaje, tratamiento, incineración o confinamiento
- O bien,
 - Licencia Ambiental Unica, en el Apartado IV-A Generación y manejo de residuos peligrosos en el establecimiento
 - Cédula de Operación Anual para establecimientos industriales de jurisdicción federal Apartados: III Approvechamiento de aguas y descargas de agua residual y IV generación, tratamiento y transferencia de residuos peligrosos
El diagnóstico del estado actual de la empresa debe incluir:

a) Un balance cuantitativo de los flujos de materiales existentes en la empresa, es decir, materias primas, materiales auxiliares, consumos de agua y energía, productos terminados y residuos generados.

b) Una descripción de la composición de los materiales mencionados en el punto anterior principalmente de los residuos: composición, estado físico, puro o mezclado, clasificación de los residuos peligrosos que le correspondería de acuerdo a la NOM-052-ECOL-1993 (ver capítulo 4.4).

c) Especificación de los puntos de generación de residuos, y su manejo actual tanto interno como externo.

d) La determinación específica de los costos del material de entrada y de los residuos peligrosos por el manejo de los residuos.

Las entradas y salidas de las corrientes de materiales y su composición deben ser registradas lo más exactamente posible, mediante la información recopilada. Para facilitar este paso puede elaborarse un diagrama de flujo que a grosso modo describa las áreas de producción individualmente, en esta áreas se identificarán las materias primas y materiales auxiliares empleados y los tipos de residuos generados.

En la figura siguiente se muestra un ejemplo de un diagrama de flujo de una industria textil. En éste se pueden identificar tanto los materiales empleados como los residuos generados.

![Diagrama de flujo de una industria textil](image-url)

Figura 3.1-1. Ejemplo de un diagrama de flujo general en una industria textil
En la tabla 3.1-2 se presenta la Hoja de datos de residuos por instalación o proceso, en la cual se puede recopilar la información de los residuos generados en cada área de producción de la empresa (debe usarse una hoja por cada instalación). A continuación en la tabla 3.1-3 se presenta la Hoja de datos de residuo, en la cual se especifican las características de cada uno de los residuos identificados en toda la planta (debe usarse una hoja por cada residuo).

Tabla 3.1-2. Hoja de datos de residuos por instalación

<table>
<thead>
<tr>
<th>Empresa:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha:</td>
<td></td>
</tr>
<tr>
<td>Instalación No.:</td>
<td>1</td>
</tr>
<tr>
<td>Denominación de la instalación:</td>
<td>Almacén de productos químicos y sustancias auxiliares</td>
</tr>
</tbody>
</table>

1. Tipo de residuo (denominación oficial NOM-052-ECOL-1993):
Tambos y contenedores con residuos de tintes y colorantes

<table>
<thead>
<tr>
<th>No. del residuo:</th>
<th>RP18.1/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad [ton ó m3/año]:</td>
<td></td>
</tr>
<tr>
<td>Residuo Peligroso:</td>
<td></td>
</tr>
<tr>
<td>Puro:</td>
<td></td>
</tr>
<tr>
<td>Mezclado con:</td>
<td></td>
</tr>
</tbody>
</table>

2. Tipo de residuo (denominación oficial):
Tipo de residuo (denominación interna): Tambos vacíos impregnados de colorantes y sustancias químicas

<table>
<thead>
<tr>
<th>No. del residuo:</th>
<th>RP18.1/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad [ton ó m3/año]:</td>
<td></td>
</tr>
<tr>
<td>Residuo Peligroso:</td>
<td></td>
</tr>
<tr>
<td>Puro:</td>
<td></td>
</tr>
<tr>
<td>Mezclado con:</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.1-3. Hoja de datos por residuo

<table>
<thead>
<tr>
<th>Empresa:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Persona responsable:</td>
<td></td>
</tr>
<tr>
<td>Fecha :</td>
<td></td>
</tr>
<tr>
<td>Residuo:</td>
<td>Lodos de tratamiento</td>
</tr>
<tr>
<td>Residuo denominación oficial (NOM-052-ECOL-1993):</td>
<td>Lodos del sistema de tratamiento de aguas residuales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código del residuo Clave CRETIB:</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número INE:</td>
<td>RP18.1/02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Se genera en las instalaciones No.:</th>
<th>1 Planta de tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición química/física:</td>
<td>Lodos con contenido de metales pesados</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cantidad [ton ó m3/año]:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de contenedor:</td>
<td>Tambor metálico</td>
</tr>
<tr>
<td>Tamaño del contenedor:</td>
<td>200 litros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localización del contenedor de recolección:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsable para el transporte, manejo y la disposición:</td>
<td></td>
</tr>
<tr>
<td>Transportista:</td>
<td></td>
</tr>
<tr>
<td>Instalación de manejo o disposición final</td>
<td></td>
</tr>
<tr>
<td>Costos por ton ó m3:</td>
<td></td>
</tr>
<tr>
<td>Costos por año:</td>
<td></td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
</tr>
</tbody>
</table>
A continuación se registrarán en una tabla los materiales empleados, sus cantidades y el precio unitario de éstos, en una cuarta columna se colocarán los precios totales por el consumo de estos materiales, ya sea mensual o anual. Con esta tabla (tabla 3.1-4) se podrán identificar claramente cuáles son los consumos y costos relevantes en cuanto a materias primas. Una tabla igual se debe elaborar para los residuos generados, en la que se podrán identificar cuáles son los residuos relevantes a considerar, ya sea por su volumen y/o por sus costos de manejo (tabla 3.1-5).

Tabla 3.1-4. Lista detallada de los materiales empleados en toda la planta

<table>
<thead>
<tr>
<th>Materia prima y auxiliares</th>
<th>Consumo por año Ton o m³</th>
<th>Costo unitario</th>
<th>Costo total anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.1-5. Lista de residuos en toda la planta

<table>
<thead>
<tr>
<th>Residuos</th>
<th>Generación anual Ton o m³</th>
<th>Costo unitario</th>
<th>Costo total anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El análisis de la empresa también debe realizarse por secciones de producción individualizado, para las cuales igualmente se elaborarán las tablas correspondientes (3.1-6 y 3.1-7) tanto de materiales como de residuos. En este caso es importante iniciar con aquellas áreas específicas de la empresa en donde se ha determinado, con base en el análisis global, prioridad para la minimización, éstas se derivan de los datos recabados con las tablas 3.1-2 y 3.1-3.

Tabla 3.1-6. Lista detallada de materia prima y materiales auxiliares en el área de producción “A”

<table>
<thead>
<tr>
<th>Materia prima y auxiliares</th>
<th>Consumo por año Ton o m³</th>
<th>Costo unitario</th>
<th>Costo total anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para esta misma área también se debe elaborar una tabla para los residuos generados.

Tabla 3.1-7. Lista de residuos en el área de producción “A”

<table>
<thead>
<tr>
<th>Residuo</th>
<th>Generación anual Ton o m³</th>
<th>Costo unitario</th>
<th>Costo total anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Conceptos empresariales para el manejo integral de los residuos peligrosos e industriales

Después de hacer el análisis para el área “A”, se puede elaborar el mismo análisis para el resto de las áreas de producción.

3.1.2 Identificación de los puntos y causas de la generación de residuos

La evaluación y registro del estado actual de la empresa, finalmente debería llevar al siguiente resultado:

- Transparencia de todo el proceso respecto a los flujos de materiales existentes y su relevancia en la generación de residuos.
- Localización de los principales puntos de entrada de insumos, relevantes en cuanto a la generación de residuos.
- Identificación de las fuentes principales de los residuos considerados como prioritarios.
- Identificación de procesos que generan una cantidad considerable de residuos.
- Identificación de procesos con costos elevados de materia prima y/o con altos costos de manejo de residuos.
- Localización de procesos con un alto porcentaje de productos defectuosos.
- Localización de procesos que generan residuos que requieren un manejo especial o que su manejo es muy costoso.

El análisis anterior también debe facilitar la identificación de las causas que generan los residuos, a fin de poder identificar las posibles medidas correctivas. Entre las posibles causas de generación de residuos podemos encontrar:

- Causas relativas a los materiales: baja calidad de materiales, falta de especificaciones de calidad, mal manejo, almacenamiento inadecuado, etc.
- Causas relativas a la operación y mantenimiento: falta de mantenimiento preventivo, diseño y operación del equipo (equipo sobrediseñado o subdiseñado, sobrecargas, etc.), líneas de proceso no organizadas, falta de espacio, cambios recientes en el proceso, falta de información, etc.
- Causas relativas a las prácticas operativas: falta de capacitación del personal, producción bajo presión, riesgos en el trabajo, falta de motivación de los trabajadores, falta de comunicación, etc.
- Causas relativas a los productos: diseño de productos, especificaciones de calidad demasiado altas, empaque y embalaje, etc.
- Causas relativas al manejo de residuos: mezcla de residuos, falta de conocimiento sobre residuos peligrosos, poca valoración de los residuos con posibilidad de reciclaje, sistemas inadecuados de recolección, etc.

3.1.3 Identificación de oportunidades de minimización y opciones de manejo

Con base en el diagnóstico de la situación actual, pueden diseñarse los conceptos de minimización propios para cada empresa del giro textil.

Las medidas de minimización que pueden deducirse a partir de esta información pueden dividirse en:

- Medidas específicas referentes a los materiales empleados.
- Medidas referentes a los procesos.
- Medidas referentes al control del proceso, medidas de organización.
Debe procurarse que al identificar y elegir medidas de minimización y manejo de residuos en la empresa se siga el siguiente orden de prioridad para el manejo de los residuos.

![Diagrama de manejo de residuos](image)

Figura 3.1-1. Esquema de manejo de residuos

Las visitas realizadas a industrias representativas del giro textil en el marco del presente manual, mostraron que a partir de la elaboración del registro del estado actual real se han encontrado medidas que, con poco esfuerzo, permiten disminuir la generación de residuos.

Se pueden obtener éxitos considerables en la minimización y/o reducción de la toxicidad de los residuos aplicando medidas simples como por ejemplo:

- Procurar que las materias primas empleadas sean “amigables” al ambiente.
• Optimizar la gestión de los empaques y embalajes.

• Recoleectar el vidrio, papel y otros tipos de residuos por separado facilitando así el reciclaje.

• No mezclar los residuos peligrosos con los residuos industriales no peligrosos.

• Optimizar el desarrollo de los procesos.

La identificación y selección de las medidas básicas de minimización a instrumentar puede realizarse en el interior de la empresa, con la ayuda de los responsables y trabajadores de cada área, pues son los que están más involucrados en el proceso. Sin embargo, también puede recurrirse al apoyo de asesores externos, literatura especializada, publicaciones del giro o consultar con las autoridades y cámaras correspondientes (ver capítulo 8).

Las medidas identificadas deberán ser evaluadas tanto técnica como económicamente, a fin de establecer los costos reales de su instrumentación (adquisición y operación) y los ahorros esperados por esta medida en el aspecto económico y las ventajas o desventajas técnicas específicas para el proceso.

En la evaluación de las medidas además de evaluar las ventajas y desventajas técnicas y económicas, también deben considerarse los aspectos que no son cuantificables, pero que sin embargo no son menos importantes:

⇒ Impacto sobre el medio ambiente
⇒ Efecto sobre la salud de los trabajadores
⇒ Mejora en la calidad de los productos
⇒ Reducción del riesgo por manejo de sustancias y residuos
⇒ Mejora de la imagen de la empresa, etc.

<table>
<thead>
<tr>
<th>Tabla 3.1-1. Instrumentación de un Concepto Empresarial de Manejo de Residuos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Registro permanente de la generación de los diferentes tipos de residuos</td>
</tr>
<tr>
<td>• Evaluación del manejo de los residuos</td>
</tr>
<tr>
<td>• Descripción de todas las estrategias empleadas para reducir y reusar los residuos peligrosos y no peligrosos</td>
</tr>
<tr>
<td>• Especificar el manejo externo de los residuos (confinamiento, tratamientos físicos, químicos, biológicos y térmicos), y mantener al día los documentos correspondientes al manejo</td>
</tr>
<tr>
<td>• Controlar que se observe la prohibición de mezclar los residuos</td>
</tr>
<tr>
<td>• Mapa indicando los lugares de recolección de residuos peligrosos y no peligrosos</td>
</tr>
<tr>
<td>• Mantener al alcance de todo el personal la información sobre la peligrosidad y requerimientos técnicos de manejo</td>
</tr>
<tr>
<td>• Recopilación de los costos de disposición, diferenciando adecuadamente según los departamentos en la empresa</td>
</tr>
<tr>
<td>• Fijar responsabilidades específicas dentro de la compañía, sobre la generación y manejo de los residuos</td>
</tr>
</tbody>
</table>

3.1.4 Monitoreo y evaluación del concepto de manejo de residuos

El elaborar e instrumentar un concepto de manejo de residuos debe considerarse como un proceso continuo de mejoramiento ambiental en la empresa, que además debe ser monitoreado y evaluado periódicamente
a fin de determinar la efectividad de las medidas instrumentadas (técnica y económicamente) y la posibilidad de instrumentación de nuevas medidas.

Los puntos clave a considerar para la instrumentación y evaluación de un concepto de manejo de residuos se mencionan en la tabla 3.1-8.

En los capítulos siguientes (capítulos 4, 5 y 6) se presenta un panorama de los resultados obtenidos a partir de la elaboración de los Conceptos Empresariales para las empresas visitadas del giro. En los cuales se hace un descripción de los procesos encontrados, los residuos generados en éstos y las medidas de minimización, tratamiento o disposición final, recomendadas para el giro textil.
4. Breve descripción de los principales procesos y los tipos de residuos generados

Los procesos que a continuación se presentan son los que en su mayoría utilizan las 25 empresas visitadas del giro textil. Se considera que estas empresas son representativas de la industria textil en el Valle de México. Sin embargo, posiblemente en este manual no se describan todos los procesos utilizados por este giro. Por ello, en caso de que durante la lectura de este manual surgieran dudas, se sugiere consultar directamente a las dependencias e instituciones correspondientes, listadas en el capítulo 8.

Los procesos de producción de la industria textil pueden dividirse básicamente en las etapas mostradas en la siguiente figura:

| Elaboración de hilos: |
| Cardado, estirado, peinado, veloz, hilado y enconado |
| ➔ |
| Fabricación de tejidos: |
| Urdido, tejido |
| ➔ |
| Acabado: |
| Pretratamiento (lavado, descrude, etc.), blanqueo, teñido, estampado, fijado, post-tratamiento |
| ➔ |
| Confección: |
| Diseño, trazo, corte, confección e inspección |

Figura 3.1-1. Representación esquemática de los procesos del giro textil

El área de mayor interés desde el punto de vista ambiental dentro de las industrias consideradas para la elaboración del presente manual, es la fabricación y el acabado de textiles. En este proceso es en donde se generan la mayor cantidad de residuos y especialmente de residuos peligrosos. De particular interés son los procesos de pretratamiento -limpieza, descrude, etc.- blanqueo, teñido y acabado en los cuales se utilizan una gran variedad de soluciones y colorantes potencialmente peligrosos.

En las etapas de fabricación de hilos y de confección, la mayor parte de los residuos no son peligrosos y resultan relativamente fáciles de reutilizar o reciclar.

En general, la industria textil genera una gama relativamente estrecha de residuos peligrosos, la mayoría de los cuales son resultado de unos cuantos procesos. En la sección 4.6, se presenta un listado con los residuos peligrosos identificados.

A continuación se describirán brevemente los procesos más significativos, los materiales empleados con mayor frecuencia y los residuos generados en estos procesos.

4.1 Elaboración de hilos

4.1.1 Cardado, estirado, peinado, veloz, hilado y enconado.

Primeramente, la materia prima (pacas de las fibras) se alimenta a máquinas llamadas pick-up, en donde se limpia de basuras o alguna otra impureza que esté en las pacas y al mismo tiempo se desmenuza, posteriormente se introduce en los batientes donde se mezcla la materia prima para formar rollos. El proceso siguiente es el cardado que consiste en la transformación de las fibras textiles a mechas de
aproximadamente cuatro centímetros de diámetro las cuales se enrollan hasta una longitud de aproximadamente 5,000 metros. Durante el **estirado** se regulan estas mechas, es decir se separan las mechas largas y las cortas o rotas. Las mechas generadas del estirado se dirigen hacia unas prensas de rodillos, las cuales las presionan y estiran para darle volumen al material. El siguiente paso es el **peinado** en el cual se presionan y limpian las nuevas mechas que tienen un diámetro más pequeño, estas se estiran nuevamente y se unen y tuercen entre sí para formar una mecha a partir de cuatro. En el **re-estirado** se mezclan las mechas resultantes del peinado, en caso de ser necesario (por ejemplo, algodón y poliéster), para formar una nueva fibra. Aquí también se obtienen fibras más delgadas por un nuevo estiramiento.

A continuación las mechas siguen el proceso de torsión y tensión -**veloz**- convirtiéndolas en pabilo los cuales se encarretan en bobinas de plástico o carretes metálicos. Con la finalidad de dar mayor resistencia a los pabilos, en el proceso de **hilado**, se someten a un último estiraje y torsión a partir del cual se obtiene el hilo que es enrollado en canillas. Finalmente en el **enconado** se lleva a cabo una purificación del hilo mediante la eliminación de impurezas como son: hilos gruesos, cortos, sucios o rotos. En la **figura 4.2-1** se muestra la secuencia del proceso y los principales residuos generados.

Las materias primas utilizadas durante los procesos anteriores son fibras naturales y sintéticas, aceites minerales, aprestos emulsionantes y espumantes, entre otros.

En la tabla siguiente se mencionan los principales residuos generados durante los procesos de elaboración de hilos a partir de fibras naturales o sintéticas.

<table>
<thead>
<tr>
<th>Tabla 4.1-1. Residuos generados en los procesos de cardado, estirado, peinado, veloz, hilado y enconado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borras</td>
</tr>
<tr>
<td>Cintas</td>
</tr>
<tr>
<td>Conos de cartón y plástico</td>
</tr>
<tr>
<td>Efluentes líquidos emulsionados</td>
</tr>
<tr>
<td>Hilos</td>
</tr>
<tr>
<td>Motas</td>
</tr>
<tr>
<td>Polvo</td>
</tr>
</tbody>
</table>

4.2 Fabricación de tejidos

4.2.1 Urdido y tejido

El proceso de **tejido** consiste en enlazar los hilos de la urdimbre y de tramar con otros, con el objetivo de transformar las fibras o hilos en telas. Dependiendo del artículo que se desee, se desarrolla el diseño, la proporción de la fibra y la estructura de la tela.

Procesos como el canillado, devanado, canizado, torsión y urdido son operaciones preparatorias del tejido que combinan numerosos hilos cortos en menor número de cabos continuos.

En el proceso de **urdido**, los carretes de hilos se pasan a los carretes llamados **Julios** empleados para el tejido. Este proceso tiene el objetivo de reunir en un carrete una longitud y número determinado de hilos, por ejemplo, para obtener un julio se monta una fileta, que en promedio consta de 1,200 hilos, luego se procede a colocar el título, medir el número de vueltas, la tensión de trabajo y finalmente completar la orden de trabajo requerida. Si la materia prima llega a la planta en julios este proceso no será necesario. En este proceso generalmente se mantienen condiciones adecuadas de humedad y de temperatura basándose en vapor de agua, las cuales son controladas en función de las especificaciones de elaboración de cada tela.
4. Breve descripción de los principales procesos y los tipos de residuos generados

Materia prima y auxiliares
- Hilos
- Aceites lubricantes
- Fibras sintéticas y/o naturales

Procesos
- Almacén de materia prima
 - Pick-up
 - Batientes
 - Cardado
 - Estirado
 - Peinado
 - Re-estirado
 - Veloz
 - Hilado
 - Enconado

Residuos
- Cartón
- Plástico
- Tarimas de madera
- Conos, carretes y bobinas

<table>
<thead>
<tr>
<th>Figura 4.2-1. Representación esquemática del proceso de hilado, materias empleadas y residuos generados</th>
</tr>
</thead>
</table>

El tejido es un proceso continuo que se divide en dos categorías: tejido plano y tejido de punto.

- **En el tejido plano**, el julio que contiene la hilaza con su apresto seco gira alimentando al telar con la urdimbre bajo tensión, son guiados los hilos por los agujeros de los lizos en el bastidor del atalaje y se separan en dos juegos de hilos. Un juego pasa por los atalajes con sus lizos pares y otro por los impares, de modo que la separación del atalaje con sus lizos crea en la hoja de la hilaza una...
abertura llamada paso. Por otro lado, la hilaza de trama se coloca dentro de la lanzadera, la cual va soltando hilo conforme se mueve alternativamente a través del paso de un lado a otro del telar. De este modo, los hilos se entrelazan en ángulo recto para formar la tela.

- En el **tejido de punto**, se elaboran las telas mediante la elaboración de gasas de hilo y enlazándolas con otras nuevamente formadas con el mismo hilo, para producir la estructura que se denomina de punto o de calceta. La fabricación de géneros de puntos con máquinas requiere multitud de agujas, porta agujas y elementos portadores de la hilaza. El orden de entrelazado, el modo en que se forma la gasa y los tipos de agujas e hilaza determinan el tipo de tejido resultante. Un rasgo importante de este tejido es su capacidad de estirarse en cualquier dirección. Se distinguen dos tipos de tejidos de punto: **tejidos por urdimbre** y **tejidos por trama**. En el primero miles de hilos entran en la máquina simultáneamente cada uno con su propia aguja y todos forman una gasa al mismo tiempo. El tricot, el milanés, el raschel y el simplex son variedades del tejido de punto. En el **tejido de trama**, la hilaza entra directamente a la máquina desde un cono, canilla u otra forma de empaque de modo que el hilo se entrelaza en una fila de gasas previamente hecha a lo largo del tejido. La hilaza puede entrar desde uno o más puntos de la alimentación, por lo que se pueden formar de una vez una o más filas de gasas en el tejido.

Previo al tejido, las fibras se recubren con aprestos, los productos químicos empleados para esto son principalmente almidones, gomas, ablandadores, penetrantes y preservativos. Cada fabricante tiene su propia formulación. También son usados materiales base más económicos como los adhesivos, almidones formadores de película y alcoholes. Los almidones, gomas y colas actúan adecuadamente sobre fibras naturales hidróficas, pero no dan buen resultado en las fibras de nylon y otras fibras hidrofóbicas.

Los ablandadores se usan para proporcionar flexibilidad a la película de almidón, para propagar la lubricación a la hilaza que ha de pasar por los peines, lizos y atalajes del telar. Se usan como ablandadores: el sebo, diversos aceites y grasas como el aceite de coco, el de ricino, la estearina, la parafina y varios aceites y grasas sintéticos.

Tabla 4.2-1. Residuos generados en el urdido, tejido y zurcido

- Conos y carretes de plástico y/o cartón
- Efluentes líquidos con partículas en suspensión
- Hilos
- Motas
- Polvos
- Recortes de tela
4.3 Acabado

El acabado abarca todas las operaciones químicas y mecánicas a que se someten los hilos y los tejidos. Consta de los procesos de pretratamiento, blanqueo, teñido, fijado, estampado, post-tratamiento (aprestado, secado, planchado y otras operaciones menos comunes por ejemplo, afelpado y aterciopelado).

4.3.1 Lavado y otras operaciones de limpieza (Pretratamiento)

Los procesos de pretratamiento son empleados para preparar el material textil para subsecuentes procesos tales como: blanqueo, teñido y estampado.

Los procesos de limpieza, extracción y blanqueo remueven materiales desconocidos de las fibras (por ej. los aprestos empleados en el tejido), de tal manera que los grupos reactivos de las fibras, previamente bloqueados por las impurezas, son expuestos y el tejido en crudo es mejorado para el siguiente proceso.

Para un tejido crudo fabricado de fibras naturales tales como el algodón, lino, lana y seda, el proceso de pretratamiento es más complicado, que para aquellos tejidos hechos de fibras sintéticas. Por ejemplo, los tejidos de algodón pueden contener más de un 20% de materiales que pueden interferir con los siguientes procesos.
Mientras que, los textiles crudos de poliéster contienen solamente partículas sólidas, (sintéticos pequeños solubles en agua), los cuales pueden ser removidos por un simple proceso de lavado.

Los procesos empleados dependen de la formulación de la fibra y de la maquinaria disponible. Asimismo, los procesos de pretratamiento son específicos del sustrato, por lo que existe un amplio rango de reacciones químicas y procesos fisicoquímicos involucrados.

En la tabla siguiente se listan algunos de los procesos de pretratamiento que se emplean con mayor frecuencia.

Tabla 4.3-1. Procesos de pretratamiento

<table>
<thead>
<tr>
<th>Sustrato</th>
<th>Procesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algodón, lino</td>
<td>Quemado</td>
</tr>
<tr>
<td>Poliéster-algodón</td>
<td>Desapresto enzimático, Desapresto oxidativo, Desmineralización, Extracción alcalina, Blanqueo con peróxido de hidrógeno, Blanqueo con hipoclorito de sodio, Blanqueo con clorito de sodio, Blanqueo con agentes reductores, Tratamiento con sosa cáustica, Mercerización</td>
</tr>
<tr>
<td>Lana, seda</td>
<td>Desgomado, Lavado, Carbonización, Blanqueo con peróxido de hidrógeno, Blanqueo con agentes reductores</td>
</tr>
<tr>
<td>Fibras sintéticas</td>
<td>Desapresto (aprestos solubles en agua), Lavado, Blanqueo con clorito de sodio</td>
</tr>
</tbody>
</table>

A continuación se mencionan algunos de los procesos de pretratamiento observados durante las visitas a las empresas:

- Cuando se trabaja con lana, primeramente se somete a un proceso de carbonización con ácido sulfúrico o clorhídrico a temperatura elevada, mediante el cual, la materia vegetal recogida por las ovejas durante el pastoreo es reducida a carbón y eliminado posteriormente por un proceso mecánico de despolvamiento.

- El desgomado consiste en limpiar la seda de impurezas como la serina o goma de la seda, para lo cual se emplean generalmente soluciones alcalinas, jabón de aceite de oliva o aceite rojo, sosa cáustica, carbonato de sodio o sulfito sódico, a un pH de 10.

- La mercerización consiste en el tratamiento de los tejidos o de la hilaza de algodón, con una solución concentrada de sosa cáustica bajo tensión a baja temperatura para hacerlos más fuertes, lustrosos, absorbentes y más susceptibles al teñido.

- Otro proceso de pretratamiento es el descrude del algodón, la licra, el nylon o el acrílico, el cual se realiza con carbonatos, humectantes y detergentes suaves. El proceso se realiza en frío o en caliente.

Tabla 4.3-2. Residuos peligrosos generados en el pretratamiento

- **Descargas de detergentes, emulsionantes, sequestrantes, antiespumantes, solventes, suavizantes y engomantes**
- **Efluentes ácidos o básicos con materia orgánica y sólidos suspendidos**
4.3.2 Blanqueo

Los tejidos crudos, especialmente las fibras naturales, contienen casi siempre suciedad que no son completamente removidos por los procesos de extracción y lavado. La blancura de los materiales textiles son mejorados por una descomposición oxidativa o reductiva de la suciedad.

La mayoría de las empresas visitadas que realizan el proceso de blanqueo utilizan el peróxido de hidrógeno (H$_2$O$_2$), que es el más importante blanqueador oxidativo; aunque también utilizan con menor frecuencia al hipoclorito de sodio (NaClO) o clorito de sodio (NaClO$_2$). Los potenciales redox de estas sustancias bajo condiciones normales dependen mucho del pH. En el caso del H$_2$O$_2$ su potencial redox relativamente bajo facilita que pueda ser empleado en procesos en frío o en caliente y además ofrece ventajas técnicas y ecológicas sobre el NaClO y el NaClO$_2$. Por ejemplo, la descomposición del H$_2$O$_2$ forma sólo agua y oxígeno durante la reacción de blanqueo.

El agente blanqueador reductivo que más comúnmente se usa es el ditionito de sodio (Na$_2$S$_2$O$_4$) y eventualmente el dióxido de thiourea. El empleo de estos agentes requiere de sustancias auxiliares dentro de los que se incluyen activadores, estabilizadores, sistemas buffer y surfactantes, los cuales controlan el proceso de blanqueo para evitar daño al tejido crudo tratado y mejorar la absorbancia.

De manera similar al pretratamiento, el blanqueo de los materiales textiles se hace de distintas formas dependiendo del material a tratar.

A continuación se mencionan los procesos más comunes de blanqueo observados en algunas de las empresas visitadas:

- Para el **blanqueo del algodón** se utilizan soluciones diluidas de hipoclorito de sodio y peróxido de hidrógeno, compuestos clorados (hipoclorito calcio o sódico), agentes tensoactivos y agentes secuestradores orgánicos e inorgánicos como polifosfatos o ácido etilen-diamina-tetra-acético (EDTA). Para blanquear lino o rayón también puede utilizarse EDTA que evita la formación de películas de jabón insoluble en la tela y permite que no se impregnen iones de hierro que provocarían un color amarillo en la tela.

- Para el **lino** se utilizan soluciones diluidas de ácido clorhídrico, peróxido de hidrógeno y álcalis.

- El **rayón** se blanquea de manera similar al algodón, pero requiere de tiempos más cortos y menores concentraciones de químicos.

- La **seda** y la lana se blanquean utilizando dióxido de azufre y peróxido de hidrógeno. Para estas telas no deben utilizarse compuestos que liberen cloro ya que causan aspereza y amarillez.

Tabla 4.3-1. Residuos peligrosos generados en el blanqueo

| Agua residual con álcalis, ácidos, solventes, blanqueadores ópticos, hipoclorito, peróxido, secuestrantes |

4.3.3 Teñido

El teñido es el proceso que puede generar más contaminación debido a que requiere el uso no solamente de colorantes y químicos, sino también de varios productos especiales conocidos como auxiliares de teñido. Estos materiales constituyen una parte integral de los procesos de teñido (por ejemplo, agentes reductores para el teñido con colorantes de tina) incrementando las
propiedades de los productos terminados y mejorando la calidad del teñido, la suavidad, la firmeza, la textura, estabilidad dimensional, resistencia a la luz, al lavado, etc.

Los auxiliares del teñido forman un grupo muy heterogéneo de compuestos químicos, sin embargo, generalmente son surfactantes, compuestos inorgánicos, polímeros y oligómeros solubles en agua y agentes solubilizantes. Los auxiliares más comerciales son preparaciones que contienen varios de estos compuestos.

I. Sustancias auxiliares para el teñido

A continuación se mencionan algunos de los agentes auxiliares que se emplean comúnmente en las empresas visitadas y sus funciones.

- **Agentes hidrotrópicos y solubilizantes del color**

Son empleados para disolver grandes cantidades de color en una pequeña cantidad de agua. Estos agentes incrementan la solubilidad debido a sus propiedades anfotéricas y son empleados en las técnicas de Pad Batch o Pad Steam.

Algunos solventes son empleados en el teñido y estampado para lavar los residuos de color del equipo y aparatos empleados en el proceso. También algunos auxiliares empleados en el teñido continuo contienen solventes, agentes hidrotrópicos y surfactantes, no solamente por su habilidad para solubilizar el colorante, sino también para mejorar el proceso de fijado.

Los productos comerciales suministrados para disolver los colores contienen mezclas de solventes, dispersantes y surfactantes. Los solventes y agentes hidrotrópicos son necesarios cuando se tiñe con los siguientes tipos de colores:

1. Reactivos
2. Acidos y complejos metálicos

- **Agentes protectores de la reducción por calor**

Bajo condiciones desfavorables, ciertos colorantes pueden cambiar su estructura molecular durante su aplicación. En este caso agentes especiales de protección del color son añadidos a los baños de teñido, para evitar la reducción del colorante por el calor. También es muy importante mantener un preciso control del pH, lo cual se logra por la adición de buffer y agentes oxidantes.

- **Agentes humectantes**

El pre-requisito fundamental para un adecuado teñido en un baño acuoso es un completo remojo del textil. Esto se logra por medio de agentes humectantes cuyo uso depende del proceso de teñido y de la naturaleza y condición del material a teñir.

- **Dispersantes y coloides de protección**

Los colorantes insolubles en forma de dispersiones acuosas son empleados en varios procesos de teñido y estampado, por lo cual son necesarios los dispersantes en la preparación de los colorantes, ya que estabilizan el estado disperso con precisión durante su aplicación y pueden también prevenir que se precipite el colorante.

Los dispersantes empleados pueden dividirse en dos clases:

a) Surfactantes
b) Oligo- y polielectrolítos solubles en agua

Ambos tienen una estructura anfotérica y su actividad se basa en la formación de películas protectoras electrostáticas y mecánicas alrededor de las partículas dispersas del colorante, con lo cual se previene su precipitación y aglomeración.
• **Agentes complejos**

La calidad del agua es de gran importancia para los sucesos del proceso de teñido. Las impurezas insolubles y sales de metales pesados pueden causar considerables problemas durante el teñido. Los problemas que se pueden presentar son los siguientes:

a) La formación de compuestos escasamente solubles de sales con colores aniónicos, ocasionando problemas de dispersión, filtrado, desigualación en la coloración, entre otros.

b) La formación de complejos estables con las moléculas del colorante, causa cambios en la tonalidad, acompañado por la pérdida de brillantez.

Por lo tanto, purificadores y ablandadores del agua son añadidos al baño de teñido para que atrapen a los cationes multivalentes, especialmente iones de calcio, de magnesio y sales de fierro, evitando que puedan interferir con el proceso de teñido.

• **Agentes de nivelación**

Los agentes de nivelación facilitan una distribución uniforme del colorante sobre el textil, para obtener tonalidades e intensidades de coloración uniformes.

Estos agentes actúan reduciendo la velocidad del teñido, incrementando la velocidad de migración del colorante hacia el textil y mejorando la afinidad del color hacia las fibras. Otros efectos favorables son la prevención del depósito de impurezas y el incremento de la solubilidad o estabilidad del color disperso durante el teñido. Estos agentes se emplean en los procesos de teñido por agotamiento.

Las desigualdades en la coloración son causadas o intensificadas por los siguientes factores:

a) Variable afinidad del color por las fibras

b) Distribución inadecuada del líquido en el textil

c) Diferencias de temperatura en el textil

d) Variable afinidad de las fibras por el color

Lo anterior se puede prevenir optimizando las técnicas del teñido (por ejemplo, mejorando la difusión del líquido hacia el textil y controlando el pH) y empleando agentes niveladores.

• **Reguladores de pH**

El pH influye sobre la absorción de los colorantes aniónicos hacia las fibras de lana y/o poliamida y en el fijado de los colores reactivos en las fibras de celulosa. Controlando el pH, es posible mejorar la coloración en la fase de absorción o para controlar la fijación del colorante cuando se tiñen mezclas de algodón-poliéster con colorantes reactivos o dispersos.

• **Aceleradores del teñido**

Los aceleradores del teñido son empleados en los procesos de teñido por agotamiento de fibras sintéticas, para incrementar la velocidad de absorción del color disperso hacia la fibra, proporcionando más rapidez de difusión dentro de la fibra y mejorando el rendimiento del colorante.

Los aceleradores en los procesos de teñido son importantes cuando se tiñen mezclas de fibras de poliéster y lana, debido a que la lana no puede ser sujeta a un tratamiento húmedo a temperaturas superiores a 100 °C.
Sin embargo, la presencia de aceleradores en el teñido ocasiona ciertos problemas, debido a que la gran mayoría son tóxicos, elevando la demanda química de oxígeno (DQO) en el agua residual. Además, permanecen residuos de los acarreadores en las fibras después del teñido, lo cual puede afectar la resistencia a la luz y firmeza al planchado.

Para evitar o minimizar los problemas anteriores, un acelerador efectivo del teñido debe cumplir con los siguientes requisitos:

a) Máxima efectividad con una mínima cantidad de acelerador empleada
b) Independencia del efecto del acelerador, de la constitución química del colorante
c) Rápida formación de una emulsión estable del acelerador bajo condiciones de teñido
d) Baja volatilidad en el proceso
e) Fácil remoción de la fibra
f) Muy poca o ninguna contaminación del ambiente por olor

Las sustancias activas para acelerar el teñido incluyen los siguientes grupos de compuestos:

a) Bencenos halogenados líquidos
b) Hidrocarburos aromáticos
c) Compuestos aromáticos hidrolizados
d) Alcoholes aromáticos, cetonas, ácidos carboxílicos y sus esteres
e) Fenilglicoles sustituidos y sus ésteres

- **Agentes antiarrugas**

La formación de arrugas es uno de los defectos más desagradables que pueden ocurrir durante el acabado de los productos, debido a que para remover algún tipo de arruga es extremadamente difícil.

Las arrugas longitudinales se forman cuando el textil es tratado en forma de cuerda y con alta tensión longitudinal. Si los productos son tratados en forma ancha, se puede evitar la formación de arrugas. Otras medidas para evitar este defecto se relacionan con aspectos mecánicos y del proceso (por ejemplo, el fijado preliminar del material, tratamiento a baja temperatura, lento enfriamiento después del tratamiento en caliente y acabado en máquinas especiales con baja tensión longitudinal), también pueden ser minimizadas las arrugas permanentes añadiendo auxiliares especiales en el baño de tratamiento.

La acción de estos agentes no está totalmente entendida, pero probablemente actúan como lubricantes mejorando el deslizamiento de una parte de la tela sobre la otra, permitiendo que la arruga formada durante el movimiento de la tela se despliegue y desaparezca más fácilmente.

A continuación se mencionan los compuestos empleados generalmente:

a) Productos sintéticos a base de ácidos grasos o sus esteres, amidas y también alcoholes grasos. Aparte de estos compuestos no iónicos, también pueden emplearse compuestos iónicos con grupos ácidos (carboxílico, sulfónico o fosfórico)

b) Productos a base de lecitina

c) Productos solubles en agua a base de poliamidas alcoxiladas de elevada masa molecular
d) Poliacrilatos, polietoxilatos y copolímeros de acrilamida-ácido acrílico

Los problemas ambientales presentados por algunas de las sustancias auxiliares antes mencionadas son la toxicidad hacia humanos y peces, problemas en el tratamiento del agua residual debido a su poca degradación biológica y problemas de olor.

I. Técnicas de teñido.

El proceso de teñido, por razones de descripción del proceso, se dividió en las siguientes dos etapas fundamentales:

1. preparación de los colorantes, y
2. teñido.

II.1. Preparación de los colorantes

En la preparación de los colorantes se utilizan diferentes agentes auxiliares (antes mencionados) dependiendo del tipo de colorante, de la técnica y del equipo a emplear durante el teñido.

Existe una gran variedad de colorantes empleados por las empresas visitadas para el teñido de los diferentes materiales textiles, los cuales únicamente se mencionaran. La preparación de los colorantes de teñido sólo se describirá a continuación solamente en breve.

La dispersión de los colorantes es una parte importante de la tecnología del teñido. Las cantidades requeridas para una operación de teñido están en un rango aproximado de 5 g de colorante (para un lote pequeño de 50 kg de tejido y un contenido muy bajo de colorante, 0.01%) a 50 kg (para un lote grande de 500 kg de tejido y un teñido obscuro, por ejemplo, un teñido en color negro requiere un 10% de colorante). La medición manual de los colorantes es mucho más común que mediciones completamente automáticas. Las desventajas del pesado manual son principalmente: elevados requerimiento de personal, necesidad de medidas de protección contra el polvo del colorante y ocasionalmente, errores en la medición.

Inicialmente las cantidades requeridas de los materiales son pesados para posteriormente ser dispersados, diluidos o mezclados y luego añadidos a los equipos de teñido. Los detalles varían de acuerdo a la técnica de teñido. La dispersión de los colorantes puede ser de manera continua o por lote.

En el caso del teñido por lote, la cantidad requerida del colorante puede ser predisuelta o prediluida, en un lugar acondicionado para este fin o en el equipo de teñido. Los colorantes requeridos para el proceso de teñido son predisueltos o dispersos en contenedores acondicionados con mecanismos de mezclado o agitado y con sistemas de calentamiento a base de serpentines, para facilitar y agilizar la disolución del colorante, usando un volumen de agua aproximado al 10% del volumen final de licor y éste es añadido al baño.

El transporte de los colorantes disueltos y del agua, en algunos casos, se realiza mediante bombas o por gravedad a través de las tuberías y la distribución se realiza mediante válvulas.

Todos los auxiliares necesarios para los procesos son añadidos al mismo tiempo al baño, de manera directa o desde una estación de mezclado. Las cantidades y la adición de los productos son generalmente controladas por el sistema de control del programa de teñido. Es importante que exista una buena comunicación entre el control computarizado del equipo de teñido y el centro de medición de los insumos.

Los principales químicos empleados en el teñido son: sal, álcalis, agentes reductores,
sustancias auxiliares y buffers. Estos son requeridos en grandes cantidades y almacenados por separado. Las sales y los líquidos (soluciones ácidas y/o alcalinas) son añadidos directamente. Las soluciones stock, por ejemplo, de hidrosulfito y álcalis (lavado reductivo) son preparadas en una zona en donde se disuelven los polvos. La cantidad pesada de polvo es alimentada en un contenedor mezclador y la solución alcalina es añadida para disolver el polvo. La solución, posteriormente, es alimentada al lugar de uso. Los ácidos y álcalis se añaden generalmente bajo el control de un medidor de pH. Alternativamente, después de la adición sigue una programación predeterminada la cual especifica la cantidad (absoluta), el tiempo de adición y las características de la medición (incremento o decremento lineal de la velocidad del teñido).

En el teñido continuo, los licores, con un limitado tiempo de servicio, son preparados en lotes estables los cuales son mezclados poco antes de emplearse. El poco tiempo que permanece almacenado el licor a temperatura ambiente no afecta significativamente la hidrólisis del colorante.

La predicción del consumo del licor es calculada en función del peso del tejido a teñir y los auxiliares y químicos son añadidos al baño de teñido, junto con los colorantes, y posteriormente son aplicados al tejido. Los químicos líquidos y soluciones stock son prediluidos y luego añadidos al licor.

Los productos en polvo son pesados para elaborar lotes “maestros” los cuales se añaden al proceso. Alternativamente los polvos pueden ser dispersos directamente en el lugar donde se emplearán, así como las soluciones de reemplazo.

Durante la preparación de los colorantes se generan polvos los cuales pueden poner en peligro la salud humana, además de ocasionar una severa suciedad e intensa coloración del lugar de trabajo. El polvo fino es muy problemático principalmente por su estabilidad de suspensión en el aire. Esto puede ser causado aún por muy pocas cantidades de partículas de polvo. La generación de polvo fino (1-10 µm) puede disminuirse mediante formulaciones especiales (granulación) de los colorantes.

Colorantes

Para realizar el teñido de telas tejidas con hilos de fibras naturales y sintéticas, así como de sus diferentes mezclas; las empresas se valen de una gran variedad de colorantes. Estos colorantes, le confieren a la tela la calidad de solidez al lavado, a la sublimación, a la luz y al tacto que es requerido por el cliente.

La mejor clasificación de los colorantes para el industrial se fundamenta en el método de aplicación y no en la composición química. Sin embargo, químicamente se pueden clasificar en:

- Reactivos
- Directos
- Sulfurados
- De tina
- Leucoésteres de tina
- Ácidos
- Básicos
- Azóicos insolubles
- Pigmentos oxidantes
- Minerales
- Mordientes
- Naturales e inorgánicos

En la tabla siguiente se resumen de manera general algunos de los colorantes empleados en el teñido de diferentes fibras.
II.2 Teñido

Basándose en el método de introducción del color hacia o en la fibra textil, pueden distinguirse tres métodos de **teñido**:

1. **Teñido por agotamiento.**
 Difusión del colorante disuelto hacia las fibras (teñido continuo y por lote).

2. **Teñido por pigmentación.**
 Deposición del colorante insoluble en la fibra y fijado con un aglutinante.

3. **Teñido por masa y gel.**
 Incorporación del colorante durante la producción de las fibras sintéticas.

El método de teñido por agotamiento se emplea más que el teñido por pigmentación, a su vez es más importante que el teñido por pigmentación.

Durante las visitas a las empresas se observó únicamente el método de teñido por agotamiento, por lo cual se centraremos en tratará principalmente este método.

II.2.1. Teñido por agotamiento.

En el teñido por agotamiento, un colorante que por lo menos debe de estar parcialmente disuelto, se dirige por difusión a la superficie de las fibras y hacia su interior. El colorante usualmente ésta en un medio líquido (el licor), el cual también contiene al material textil.

El proceso de teñido por agotamiento puede dividirse en tres fases y cada fase se caracteriza independientemente de las otras.

Las fases se mencionan en la siguiente tabla.

Tabla 4.3-2. Fases del teñido por agotamiento

<table>
<thead>
<tr>
<th>Fase del Teñido</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teñido</td>
<td>La difusión del color hacia la fibra (cinética del teñido)</td>
</tr>
<tr>
<td>Equilibrio</td>
<td>La concentración final del colorante en la fibra se alcanza, estabiliza y ocurre la penetración del colorante</td>
</tr>
<tr>
<td>Fijación del colorante</td>
<td>Por medio de procesos químicos, de difusión o desolvación del color, se mejora la firmeza</td>
</tr>
</tbody>
</table>

a) Fase de teñido (agotamiento)

En esta fase, el color se difunde hacia las fibras textiles y el teñido del material textil por agotamiento puede ser mediante dos técnicas:

1. **Teñido por lotes (Batch)**

 En esta técnica el textil y el licor se encuentran juntos en un sistema cerrado, al cual se le añade la cantidad requerida del...
colorante y se controlan la velocidad y tiempo del teñido. La velocidad del teñido se incrementa con la temperatura, la dilatación de la fibra, la concentración de los transportadores del color y decrece conforme la concentración del colorante, el tamaño de la molécula del colorante y la concentración de los retardadores disminuyen.

ii. Teñido continuo

En esta técnica de teñido, el colorante es disuelto o disperso en el licor y una cantidad definida se aplica localmente al textil que pasa en forma continua. La difusión del color es controlada por la temperatura y/o agentes auxiliares. En este proceso las correcciones (por ejemplo, discrepancias de coloración e irregularidades) son muy difíciles y costosas. Sin embargo, la transformación en una sola operación de tejidos blancos a teñidos, es muy fácil y por esto es un proceso muy atractivo.

En ambas técnicas, el colorante posteriormente se difunde hacia las fibras textiles. Normalmente, la velocidad y uniformidad de la difusión son controladas.

La velocidad de la difusión del colorante es generalmente proporcional a la diferencia de concentración entre el licor y la fibra. Durante el proceso de agotamiento, continuamente disminuye la concentración del colorante en el licor, por lo tanto, la velocidad del teñido disminuye lenta y constantemente hasta un valor final de equilibrio.

b) Fase de equilibrio

La fase de equilibrio del teñido sigue a la fase de agotamiento sin transición. En la práctica esta fase se alcanza cuando la concentración del colorante en el licor no presenta más cambios apreciables.

El equilibrio es caracterizado por la etapa terminal del agotamiento del baño o por el rendimiento terminal del colorante con referencia al porcentaje de colorante añadido. El colorante que permanece en el licor incrementa los costos de producción y de tratamiento del agua residual. Una importante tarea de la investigación tecnológica del teñido es reducir la cantidad de este colorante.

El rendimiento del colorante se incrementa con la disminución de la temperatura del licor, la razón del licor, el efecto de retención de los auxiliares y la concentración del color o conforme se incrementa la concentración de sal, la afinidad del sustrato textil, la afinidad del colorante, y las propiedades de propagación del mismo.

Cuando se alcanza el equilibrio del teñido, la coloración resultante es con frecuencia irregular. Sin embargo, el colorante que no está fijado se dirige de las áreas más obscuras a las áreas más claras. Esta igualación o nivelación usualmente ocurre más rápidamente con grandes cantidades de colorante residual en el licor y a elevadas temperaturas.

Con ciertos niveladores auxiliares, la cantidad de colorante residual (también llamado retención de color) se controla efectivamente.

c) Fase de fijado (mejoramiento de la firmeza de la coloración)

Cuando el proceso de teñido alcanza el equilibrio, el colorante se localiza usualmente en las zonas externas de las fibras textiles. Este colorante es móvil, y puede drenar durante algún tiempo (este proceso ocurre durante la nivelación de la coloración). Posteriormente el colorante es fijado, un proceso conocido también como revelado, acabado o post-tratamiento.
El proceso de fijado depende de la química del colorante, para lo cual existen los siguientes métodos de fijado.

1. Fijado del colorante por reacción química, por ejemplo la oxidación de colores solubles para obtener pigmentos insolubles o la unión substantiva a grupos hidróxilo (OH) de la celulosa.

2. Fijado por una óptima deposición dentro de la fibra, por ejemplo, intensificando la penetración hacia las fibras o incrementando la aglomeración por un proceso de enjabonado o la precipitación de colores aniónicos por auxiliares catiónicos.

En general, también se requiere de una operación de lavado después del fijado, para remover completamente el colorante residual y agentes auxiliares, a fin de conseguir satisfactoriamente la firmeza de la coloración.

En los procesos de teñido por agotamiento continuo, la penetración del colorante hacia la fibra es parte del proceso de fijado. Algunos procesos de fijado son tan complejos, que no están separados claramente entre sí y se clasifican, independientemente de la técnica de teñido empleada, como sigue:

Reacciones químicas:

- Enlace covalente del colorante con la fibra del material.
- Cambio en la estructura de las moléculas del colorante, por ejemplo, la oxidación de colorantes de tina o sulfurados que previamente fueron reducidos.

Incorporación hacia la fibra (desolvación):

- Cambio de estructura: licor/fibra
- Formación y adición de un par de iones, por ejemplo, en los colorantes ácidos o catiónicos y en los colorantes de tina durante el enjabonado.

Las reacciones químicas proceden a una cierta velocidad que determina el tiempo de fijado, por lo cual se asume que la velocidad de la reacción se incrementa en un factor de 2 a 3, si la temperatura se incrementa 10 °C. Por ejemplo, una reacción que requiere 10 horas para fijar el 95% del material a 25 °C, puede realizarse en aproximadamente 1 minuto a una temperatura de 85 a 95 °C.

En la práctica, las formulaciones del licor con el colorante y el rango de productos se optimiza con base en los requerimientos de cada uno de los tipos de colorantes y con las tecnologías de producción existente. Los métodos más importantes de fijado pueden dividirse en los siguientes dos grupos:

a) **Semicontinuos**

En la técnica de teñido **Pad Batch**, los tejidos son cargados con el colorante y enrollados sobre los rodillos y se dejan reposar de 4 a 10 horas a temperatura ambiente. La velocidad de la reacción determina la estabilidad del licor y pueden ocurrir diferencias en el fijado, si el tiempo de reposo es corto.

En la técnica de **Pad Roll** el tejido es cargado con el licor por la almohadilla y es alimentada hacia una cámara en donde se enrolla sobre un rodillo. Este proceso es más adecuado para tejidos de celulosa y algunas veces se emplea para fijar tejidos de acetato teñidos con colorantes dispersos.
b) **Continuos**

En este tipo de procesos, el tejido teñido es sujeto a tratamientos posteriores, después de pasar a través de la línea de teñido.

En el proceso llamado *Pad Steam*, usualmente se aplica al tejido un agente fijador adicional después de que ha sido cargado con el colorante y después del pre-teñido. Ejemplos de agentes de fijado de materiales teñidos con colorantes reactivos, de tina y sulfurados, incluyen sustancias reductoras como álcalis o sal.

Generalmente se emplea un tiempo de retención aproximado de 0.5 a 2 minutos a una temperatura de 100 °C, para realizar el fijado o al menos una reacción de fijado parcial.

En el proceso de fijado llamado *termosol*, el tejido seco se carga junto con el colorante y es calentado a temperatura de transición del material textil. Este proceso se emplea cuando se trabaja con fibras termoplásticas, especialmente de poliéster y algunas veces también con poliacrílicos. Los tejidos cuyas fibras están cubiertas con una película de teñido, formada por el colorante disperso y auxiliares, son calentados a una temperatura de 210 a 220 °C durante un tiempo de 0.5 a 1 minuto. Esto causa que el colorante se difunda hacia el interior de la fibra y el fijado del colorante disperso sobre las fibras de poliéster depende de la temperatura y del tiempo. Este proceso se emplea para teñir el componente de poliéster en mezclas de algodón-poliéster. Las tonalidades obscuras requieren un subsecuente lavado para remover el colorante residual de la superficie de las fibras para mejorar las propiedades de firmeza.

Durante el *fijado por oxidación* los colorantes que han sido reducidos químicamente antes de su aplicación sobre los tejidos, deben de ser posteriormente reoxidados durante el fijado. La oxidación es generalmente realizada en equipos de lavado diseñados especialmente. El más importante agente oxidante usado actualmente es el peróxido de hidrógeno. Antes de iniciar el proceso, los excesos de álcalis son lavados del tejido y la calidad del fijado del teñido generado depende del pH de oxidación del licor.

Por ejemplo, en el teñido con colorantes leuco, después de su absorción por las fibras, el colorante es convertido nuevamente al pigmento original por oxidación y es fijado sobre la fibra. La oxidación se realiza de manera espontánea con oxígeno atmosférico o por la adición de oxidantes (H₂O₂, perborato o ácido 3-nitrobenzenc-sulfónico) al licor. Después, el material es enjuagado con agua para remover el colorante no fijado y disminuir la alcalinidad del licor. Dependiendo del agente oxidante, la oxidación se realiza en un rango de pH de 9 a 12 y de temperatura de 50 a 60 °C.

Los métodos de oxidación más comunes y los que se observaron en las empresas visitadas son los que se mencionan en la siguiente tabla.

Tabla 4.3-3. Métodos de oxidación más comunes

<table>
<thead>
<tr>
<th>Tratamiento ácido</th>
<th>Generalmente se utiliza ácido acético que fija la tonalidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ácido acético-dicromato</td>
<td>Se utiliza dicromato de sodio o potasio, sin embargo este método no es recomendable por ser carcinogénico</td>
</tr>
<tr>
<td>Peróxido de hidrógeno</td>
<td>Se obtienen tonalidades claras en un rango de pH de neutro a básico. Si no se realiza adecuadamente puede ocurrir una sobre oxidación</td>
</tr>
<tr>
<td>Otros agentes oxidantes</td>
<td>Cloritos, bromatos, persulfatos (no adecuados para todos los colores), hipoclorito de sodio (para colores sulfurados resistentes al cloro)</td>
</tr>
</tbody>
</table>

En la siguiente tabla se mencionan los residuos generados y reportados durante las visitas en el proceso de teñido.
4. Breve descripción de los principales procesos y los tipos de residuos generados

Tabla 4.3.4. Residuos peligrosos generados del proceso de teñido

- Agua residual con partículas en suspensión, químicos, igualadores, dispersantes, antiespumantes, estabilizadores de pH, secuestrantes de dureza y colorantes remanentes.
- Soluciones ácidas y alcalinas
- Soluciones con hipocloritos y peróxidos

4.3.4 Post-tratamiento de los tejidos teñidos

El post-tratamiento tiene principalmente los siguientes objetivos:

1. Mejorar o completar el fijado del colorante.
2. Mejorar las propiedades de firmeza.
3. Eliminar los químicos o auxiliares residuales mediante el lavado.
4. Mejorar la suavidad.

Durante el lavado final se aplican agentes de fijado como por ejemplo, auxiliares catiónicos y reactivos hidrolizados para mejorar las propiedades de resistencia al lavado. Los auxiliares son alimentados en una sección del equipo de lavado.

Especially en el teñido con colorantes dispersos de tejidos que contiene poliéster, se emplea un post-tratamiento reductor, ya que se pueden producir tonalidades obscuras. El colorante que es absorbido solamente en la superficie de la fibra puede ser removido mediante la adición de agentes reductores, dispersantes y álcalis, en una o dos secciones del equipo de lavado.

Generalmente un lavado neutro se aplica para remover de los tejidos, los residuos producidos de las anteriores operaciones (especialmente álcalis). Durante el lavado, el licor es neutralizado con ácido, para controlar el pH.

Por último se lleva a cabo el exprimido, secado aprestado y termofijado de las telas. El proceso de planchado y termofijado se realiza generalmente en máquinas continuas de secado (Ramas) a base de aire caliente y en las que al mismo tiempo se les da a la tela estabilidad dimensional al lavado y al planchado.

El apresto por impregnación se hace frecuentemente en máquinas tipo Foulard, lo cual consiste en la impregnación de productos químicos que determinarán ciertas características que deberá de tener la tela, como por ejemplo, tacto, suavidad, resistencia, etc.

Tabla 4.3-1. Residuos peligrosos generados en el post-tratamiento (exprimido, suavizado, secado, termofijado y planchado)

- Agua residual con materia orgánica, emulsiones, químicos remanentes y colorantes remanentes
- Agua residual con suavizantes, resinas, catalizadores, impermeabilizantes, humectantes y antideslzantes
- Soluciones ácidas y alcalinas

4.3.5 Estampado

Algunas de las empresas visitadas realizan el estampado de textiles mediante la técnica de impresión por pantalla o serigrafía. Este proceso básico consiste en presionar la solución acuosa de colorante a través de una pantalla (malla) parcialmente cubierta con una emulsión.

Los tamaños de las mallas variarán de unas 200-300 perforaciones por pulgada. Las pantallas se preparan por métodos...
fotográficos y se enmascararan para que estén porosas sólo en el área que la decoración lo necesita. La pantalla se soporta en un marco que mantiene la pantalla tensa y retiene el abastecimiento de colorante. Una rasqueta flexible de goma se pasa por la pantalla y esto forza los colorantes a través del área porosa de la pantalla hacia el material textil. La pantalla después se retira del contacto con los textiles y éstos se ponen a secar a temperatura ambiente o en un horno.

El estampado se realiza manualmente o en equipos automáticos. En el caso de procesos automáticos la impregnación del colorante se realiza con rasquetas o varillas y tienen una capacidad para estampar hasta 16 colores.

El estampado por pantalla permite la aplicación de una capa mucho más gruesa de colorante en comparación con otras técnicas y por lo tanto es conveniente para casos donde se necesitan colores sólidos y brillantes. Otras ventajas de este proceso, son el fácil entrenamiento de operadores, bajo costo en equipo pantalla, poco tiempo para el cambio y tiempos de amortización de costos cortos. La desventaja mayor es que para trabajos multicolores es necesario usar una serie de estaciones de pantallas, con la disposición de dejar secar los colorantes entre cada estación de estampado. Sin embargo, si los colores no se enciman, es posible usar una pantalla dividida y estampar dos o más colores.

Tabla 4.3-1. Residuos peligrosos generados en el proceso de estampado

- Efluentes con colorantes y pigmentos remanentes y productos auxiliares
- Soluciones ácidas, estabilizadores, álcalis, humectantes, resinas, ligantes, emulsiones y sensibilizadores
- Solventes y pantallas gastadas
4. Breve descripción de los principales procesos y los tipos de residuos generados

- Envases o tambos vacíos usados en el manejo de sustancias y residuos peligrosos
- Material de empaque (cartón, tarimas, plástico, etc)

Blanqueo

- Soluciones con residuos tóxicos como álcalis, ácidos, solventes, blanqueadores ópticos
- Soluciones con hipocloritos y peróxidos

Preparación de los colorantes

- Soluciones con residuos tóxicos como álcalis, ácidos, solventes, blanqueadores ópticos
- Soluciones con hipocloritos y peróxidos

- Descargas de detergentes, emulsionantes, secuestrantes, antiespumantes, solventes, suavizantes y engomantes
- Efluentes ácidos o básicos con materia orgánica y sólidos suspendidos

- Soluciones con hipocloritos y peróxidos
- Polvos de colorante
- Soluciones con hipocloritos y peróxidos

Exprimido y suavizado

- Agua residual con partículas en suspensión, químicos, igualadores, dispersantes, antiespumantes, estabilizadores de pH, suavizantes y colorantes remanentes
- Soluciones ácidas o alcalinas

- Soluciones ácidas o alcalinas

Secado y termofijado

- Agua residual con suavizantes, resinas, catalizadores, impermeabilizantes, humectantes y antideslizantes
- Soluciones ácidas y alcalinas

Planchado

- Reciclaje de materiales

Almacén de productos terminados

Es importante considerar los equipos que generan emisiones a la atmósfera por ej. las calderas y aquellos en los que pueda existir perdidas de energía en forma de calor, fugas de agua, etc.

Figura 4.3-3. Representación esquemática de los procesos de acabado y residuos generados
4.3.6 Confección

Las empresas dedicadas a la confección de prendas de vestir tienen poca generación de residuos peligrosos, principalmente aceites empleados en la lubricación de maquinaria y equipo y del mantenimiento, así como materiales y sustancias empleados en la limpieza de las prendas manchadas y sus envases.

Generalmente las empresas reciben la tela ya cortada y únicamente se dedican a maquilar la costura de las diferentes prendas a elaborar. Sin embargo, algunas empresas cuentan con un departamento de diseño, trazo y corte. Estos procesos se realizan con sistemas computarizados o semiautomáticos logrando mejores trazos y aprovechamiento de los pliegos de telas.

Una vez obtenidos los cortes se envían a las áreas o empresas que se dedican a maquilar las prendas de vestir.

El proceso se inicia con la recepción y habilitado de los recortes o telas. En esta área se realiza la separación de los recortes que integraran una prenda de vestir y se agrupan en paquetes. Los paquetes son distribuidos al área de costura el cual se divide en diferentes secciones de acuerdo al proceso que realiza.

Una vez armadas las prendas se revisan verificando que las medidas correspondan a la talla especificada, además son deshebradas y desmanchadas - en caso de presentar alguna mancha- y se verifica que no existan errores en las costuras. Si existen errores de costura se marcan y se regresan a la sección correspondiente para ser reparada si es posible. Si las medidas no corresponden a la talla se asignan a otra talla o se catalogan como producto de segunda.

En el caso de que las piezas estén manchadas se envían a la sección de limpieza, en donde se aplica generalmente percloroetileno como limpiador, por medio de aire a presión en una mesa de vacío conectado a un extractor de aire.

Después de revisar y corregir errores de producción las prendas se envían generalmente al área de planchado. Este proceso se realiza en planchas manuales de vapor, el cual es generado en calderas.

Las prendas planchadas y dobladas son etiquetadas especificando la talla, modelo y color, de acuerdo a un código o se colocan en bolsas de plástico o cajas de cartón individuales con el etiquetado correspondiente. Por último se almacenan para su posterior entrega al cliente.

Tabla 4.3-1. Residuos generados en la confección

| Bobinas, conos y carretes de cartón y plástico |
| Contenedores vacíos de percloroetileno y aceite lubricante |
| Cuchillas de corte |
| Desperdicios de tela |
| Ganchos de plástico |
| Material de empaque corrugado |
| Materiales de limpieza impregnados con aceite o solvente |
La mayoría de las empresas visitadas cuentan con telares antiguos en los que se utilizan 3 o más operarios por cada telar. Sin embargo, en el caso del tejido de punto el diferencial tecnológico es menor y plantas de diversos tamaños utilizan máquinas circulares.

Sin embargo, algunas industrias aunque cuenten con telares automáticos, las operaciones de engomado, desengomado, blanqueo, neutralización, tejido, etc., se realiza en un mismo recipiente, lo que hace que las soluciones tengan que ser evacuadas antes de la siguiente operación; estas soluciones con toda su carga química son descargadas al alcantarillado sin ningún tratamiento en la mayoría de los casos.

El proceso total de fabricación textil se realiza en forma continua en la mayoría de las industrias visitadas. Inmediatamente después de tejida la tela, se envía a los tratamientos necesarios para su tejido y demás acabados.

Los equipos utilizados en estos procesos generalmente son unidades de tejido a presión atmosférica a lo ancho tipo Jigger, en las que la tela completamente extendida pasa por los procesos de tejido y acabado; se utilizan serpentines o calderas de vapor como medio de calentamiento y se presentan limitaciones en cuanto al largo y ancho de la tela. Otras unidades utilizadas son los llamados tubos para teñir en alta temperatura a presión tipo Jetts, en las que la tela se maneja en forma de cuerda y están constituidas por un tanque cilíndrico horizontal de tintura, un autoclave a presión, una bomba principal para recirculación del baño y un tanque de dosificación. En las barcas o Foulard, se realizan procesos como el blanqueo, desengrase, suavizado, descubre y jabonado. Además se emplean máquinas lavadoras Goller o de cualquier otro tipo y si se trabaja con fibras de celulosa teñidas con colorantes reactivos se emplean sistemas de teñido semicontinuos.
conocidos como Pad Batch, o sistemas continuos llamados Pad Steam.

Los materiales textiles una vez teñidos, fijados, lavados y enjuagados, son exprimidos generalmente en centrífugas y posteriormente secados en unas máquinas llamadas ramas, en las que la tela avanza por un túnel donde circula aire caliente. La temperatura se mantiene constante mediante radiadores de vapor o aceite térmico o a través de quemadores de gas. En algunos otros casos, el secado se realiza mediante tambores continuos.

4.5 Laboratorio

Una importante tarea del laboratorio es realizar ensayos de reproducción generalmente para el área de teñido, especialmente de nuevas formulaciones, para proporcionar innovaciones y mejoras en la elaboración de sus productos, con lo cual también ayuda a mantener constante la producción. Los factores más importantes a considerar se relacionan principalmente con la velocidad, el tiempo y el costo del teñido.

Los trabajos del laboratorio más importantes sobre las técnicas del teñido se mencionan a continuación.

<table>
<thead>
<tr>
<th>Tabla 4.5-1. Residuos generados en el laboratorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Soluciones residuales de pruebas analíticas</td>
</tr>
<tr>
<td>✓ Restos de formulaciones de teñido</td>
</tr>
<tr>
<td>✓ Muestras de teñido</td>
</tr>
<tr>
<td>✓ Rechazos</td>
</tr>
</tbody>
</table>

1. Determinación de las formulaciones del teñido.
2. Formulaciones de la tonalidad.
3. Determinación de la adición del colorante durante el teñido.
4. Pruebas de los productos de teñidos. Las diferentes propiedades de firmeza del color son muy importantes, para lo cual se emplean métodos muy especiales y algunas veces se requiere de equipo especial.
5. También se realizan pruebas de soporte de las propiedades mecánicas de los textiles.
6. Muestras del teñido para medir la coloración (curvas de calibración) en la elaboración de teñidos especiales de tejidos nuevos.
7. Investigación de defectos y recomendaciones para su corrección.
8. Optimización de los procesos. Costos de minimización, reducción en los consumos de agua, minimización de la concentración del colorante en el agua residual, etc., así como la selección de los colorantes con mejor compatibilidad, mayor resistencia mecánica a la luz, al lavado, etc.
9. Análisis de rechazos. Investigación de muestras de materiales rechazados por discrepancia de calidad.
10. Desarrollos y nuevos métodos. El desarrollo de nuevos métodos de teñido y de materiales de acabado con la maquinaria y equipo disponible.

48
4.6 Clasificación de los tipos de residuos de acuerdo a la normatividad vigente

La declaración de un residuo, dentro del marco legal de autorización y clasificación, para su posterior disposición, requiere que éste sea correctamente identificado. Para ello, debe asignársele a cada residuo el número INE correspondiente, utilizando para ello el listado de residuos peligrosos de la norma correspondiente (NOM-052-ECOL-1993, publicada en el Diario Oficial de la Federación). La lista que se presenta a continuación, da una visión general del tipo de residuos generados por el giro textil, incluyendo el número INE correspondiente y el nombre interno por el que se les puede conocer en las empresas. Esta lista tiene como objetivo facilitar al generador del giro en cuestión, la clasificación de sus residuos.

4.6.1 Residuos con número del INE

<table>
<thead>
<tr>
<th>Número INE</th>
<th>Designación oficial</th>
<th>Nombre interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPNE1.1/03</td>
<td>Aceite lubricante gastado</td>
<td>Aceite usado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aceite lubricante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aceites lubricante condensado para los procesos de acabado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aceites quemados</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aceite de máquinas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aceite térmico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lodos de aceite y aceite sucio</td>
</tr>
<tr>
<td>Envases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPNE1.1/01</td>
<td>Envases y tambos vacíos usados en el manejo de materiales y residuos peligrosos</td>
<td>Envases vacíos de productos químicos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tambos impregnados con diferentes sustancias químicas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tambos de materia prima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tambos de plásticos de resina acrílica</td>
</tr>
<tr>
<td>RP 18.1/01</td>
<td>Tambos y contenedores con residuos de tintes y colorantes</td>
<td>Botes vacíos de colorantes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porrones de plástico vacíos impregnados con sustancias químicas y colorantes</td>
</tr>
<tr>
<td>Lodos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP18.1/02</td>
<td>Lodos del sistema de tratamiento de aguas residuales</td>
<td>Lodos de la planta de tratamiento</td>
</tr>
<tr>
<td>Otros residuos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP18.1/04</td>
<td>Residuos de detergentes, jabones y agentes dispersantes</td>
<td>Agua residual (residuos de detergentes, jabones y agentes dispersantes)</td>
</tr>
<tr>
<td>RP18.1/05</td>
<td>Residuos ácidos o alcalinos</td>
<td>Soluciones residuales de pruebas analíticas en el laboratorio (mezcla ácida o alcalina de colorantes y aditivos)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efluentes ácidos o básicos con materia orgánica y sólidos suspendidos, detergentes, emulsionantes, secuestrantes, antiespumantes, solventes, suavizantes y engomantes</td>
</tr>
<tr>
<td>RP18.1/06</td>
<td>Residuos provenientes del blanqueo</td>
<td>Soluciones residuales con hipocloritos y peróxidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soluciones con residuos tóxicos como son ácidos, ácidos, soventes, blanqueadores ópticos, hipocloritos y peróxidos</td>
</tr>
</tbody>
</table>
4.6.2 Residuos con clave CRETIB

A continuación se presentan los residuos generados por la industria textil que no se encuentran directamente listados en la norma correspondiente (NOM-052-ECOL-1993), pero que son considerados peligrosos por sus características CRETIB.

<table>
<thead>
<tr>
<th>Clave CRE TIB</th>
<th>Nombre interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>T, I</td>
<td>Trapos contaminados con thinner y pintura</td>
</tr>
<tr>
<td>T, I</td>
<td>Hiladura/hebra de tela impregnada con aceite lubricante</td>
</tr>
</tbody>
</table>

4.6.3 Otros residuos

Los tipos de residuos, en general no peligrosos generados por el giro industrial textil son:

<table>
<thead>
<tr>
<th>Residuo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobinas de plástico</td>
</tr>
<tr>
<td>Bolsas de plástico</td>
</tr>
<tr>
<td>Borra y estopa</td>
</tr>
<tr>
<td>Cartón y material de empaque</td>
</tr>
<tr>
<td>Chatarra</td>
</tr>
<tr>
<td>Conos de cartón</td>
</tr>
<tr>
<td>Conos de plástico</td>
</tr>
<tr>
<td>Cubiertas y lonas (poliéster)</td>
</tr>
<tr>
<td>Desperdicio de pantimedia</td>
</tr>
<tr>
<td>Desperdicios de tela</td>
</tr>
<tr>
<td>Estopa de algodón, nylon y poliéster</td>
</tr>
<tr>
<td>Fibro Cemento (poliéster - nylon)</td>
</tr>
<tr>
<td>Fieltros (polipropileno)</td>
</tr>
<tr>
<td>Ganchos de plástico</td>
</tr>
<tr>
<td>Material de empaque corrugado</td>
</tr>
<tr>
<td>Pelusa de algodón</td>
</tr>
<tr>
<td>Poliétileno</td>
</tr>
<tr>
<td>Residuos sólidos municipales</td>
</tr>
<tr>
<td>Tarimas de madera</td>
</tr>
<tr>
<td>Telas de formación (nylon)</td>
</tr>
</tbody>
</table>

4.6.4 Aguas residuales

La industria de acabados de fibras textiles es una de las ramas industriales que más consume agua. El consumo depende de los procesos y métodos de acabado, del tipo y forma de las fibras, así como de la maquinaria y equipo empleado.

Los resultados de una serie de mediciones de las cantidades de consumo de agua requerida en términos del material textil y del equipo de teñido (reportados en la literatura) se presentan en la siguiente tabla.

<table>
<thead>
<tr>
<th>Textiles</th>
<th>Consumo m³/ton de material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telas de algodón</td>
<td>80-240</td>
</tr>
<tr>
<td>Tejidos de algodón</td>
<td>70-180</td>
</tr>
<tr>
<td>Telas de lana</td>
<td>100-250</td>
</tr>
<tr>
<td>Telas de poliacrilato</td>
<td>10-70</td>
</tr>
</tbody>
</table>

La composición del agua residual del proceso de teñido depende en gran medida de los sustratos teñidos, de los colorantes, de los auxiliares textiles y químicos empleados, por lo cual es imposible que los efluentes generados estén dentro de los valores límite de descarga. Como una regla, el agua residual del teñido y acabado sin tratar tiene un pH alcalino, una elevada temperatura, alta conductividad y una pobre relación de $\text{DBO}_{5}:\text{DQO}$ (baja degradabilidad) comparado con el agua residual doméstica.

Como resultado del intenso uso del agua en la industria de acabados textiles, las regulaciones para las descargas del agua residual son muy importantes. Se debe realizar una distinción entre el agua residual que es descargada hacia el sistema de alcantarillado municipal y el agua residual que es descargada a cuerpos de agua.

Si ciertos requerimientos no son cumplidos (NOM-001-ECOL-1996 y NOM-031-ECOL-1993), el agua residual debe ser tratada o la
descarga de los contaminantes en cuestión deben de ser disminuidos o eliminados completamente. Las medidas preventivas son más económicas que la subsecuente eliminación de la contaminación.

La descarga de varios contaminantes listados en la tabla 4-23, pueden disminuirse o eliminarse cambiando los procesos o los productos. Por ejemplo, el color residual de los colores reactivos puede reducirse empleando colorantes con elevado poder de fijación, con más afinidad, bifuncionalidad o colorantes bireactivos.

Tabla 4.6-2. Fuentes importantes de contaminación en el agua residual de los procesos de pretratamiento, blanqueo, teñido, fijado, lavado y enjuague

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de pH alcalino</td>
<td>Teñido con colorantes reactivos, de tina y sulfurados; mercerización, blanqueo</td>
</tr>
<tr>
<td>Valor de pH ácido</td>
<td>Teñido con colorantes básicos, ácidos y dispersos</td>
</tr>
<tr>
<td>Color</td>
<td>Colorantes reactivos y sulfurados</td>
</tr>
<tr>
<td>Metales pesados:</td>
<td></td>
</tr>
<tr>
<td>Cromo</td>
<td>Colores con complejos metálicos, oxidantes</td>
</tr>
<tr>
<td>Cobalto</td>
<td>Colores con complejos metálicos</td>
</tr>
<tr>
<td>Cobre</td>
<td>Colores con complejos metálicos, pigmentos, mejoradores de la resistencia a la luz</td>
</tr>
<tr>
<td>Níquel</td>
<td>Colores con complejos metálicos</td>
</tr>
<tr>
<td>Zinc</td>
<td>Colores catiónicos, agentes reductores, biocidas, catalizadores</td>
</tr>
<tr>
<td>Hidrocarburos halogenados</td>
<td>Detergentes, desengrasantes, acarreadores, blanqueadores clorados</td>
</tr>
<tr>
<td>Aceites minerales</td>
<td>Preparación de hilos, aceites de hilado, desespumantes</td>
</tr>
<tr>
<td>Fósforo, fosfatos</td>
<td>Buffers, atrapadores, retardadores de llama</td>
</tr>
<tr>
<td>Sulfito</td>
<td>Colores sulfurados</td>
</tr>
<tr>
<td>Sales</td>
<td>Teñido reactivos y substantivo</td>
</tr>
</tbody>
</table>

A continuación se mencionan algunos requerimientos generales para el reuso del agua residual, recuperación de materiales y sustitución de sustancias que dificultan el tratamiento del agua residual.

- Reproceso y reuso del agua de lavado del proceso de estampado.
- Segregación de los líquidos de teñido y lavado con alto contenido de colorantes y residuos de materiales de acabado.
- Prelimpieza de recipientes y tanques con poca generación de agua residual. Por ej. lavado a presión.
- Los residuos de químicos, colorantes y auxiliares textiles deben de colectarse por separado y reprocesados para recuperarse o disponerse adecuadamente.
- Evitar el uso de agentes orgánicos complejos como el EDTA que son difíciles de eliminar biológicamente.

Para facilitar lo anterior, es necesario realizar la separación de las corrientes de agua residual del desencolado, blanqueo, estampado, teñido, acabado, recubrimiento, laminado, limpieza de recipientes y tanques y acabado del algodón antifieltro.

Las aguas residuales de la industria textil no cuentan directamente con una clave INE, ni se clasifican por sus características CRETIB. Su manejo, control y descarga están reguladas por las normas correspondientes presentadas en el capítulo 2.
5. Medidas para evitar o minimizar la generación de residuos

A continuación se presentan diferentes medidas para prevenir o minimizar la generación de residuos según el nivel de tecnología actual o de acuerdo al estado del arte. Estas medidas sirven como base para que las empresas puedan, por sí mismas, enfrentar el problema de la contaminación ambiental y contribuir a su solución. Posteriormente, los generadores de residuos en colaboración con las autoridades, asociaciones, empresas prestadoras de servicios de manejo y reciclaje de residuos y los fabricantes, pueden lograr soluciones integrales o parciales para evitar completamente o bien minimizar la generación de residuos.

Las medidas de minimización de residuos no solamente se refieren a aspectos técnicos. También deben considerarse los costos y potenciales de ahorro, en comparación con los costos reducidos de disposición o la generación de costos adicionales, por ejemplo, por inversiones.

La mayor parte de las medidas para prevenir la contaminación dentro de la industria textil se enfocan en medidas de reducción en el uso de químicos, reuso del agua de procesos y en la reducción de los residuos sólidos (como cartón). Las medidas para evitar o minimizar la generación de residuos que a continuación se enuncian se han clasificado en:

- Medidas relativas a la organización
- Medidas relativas a materiales
- Medidas relativas a los procesos
- Medidas relativas al control o manejo de emisiones y/o residuos

Algunas medidas pueden encontrarse en más de un rubro debido a que, por ejemplo, pueden implicar cambios en el proceso y como posible consecuencia en la materia prima utilizada. Dentro de estas medidas se incluyen también las relativas al reuso/reciclaje de materiales.

El aprovechamiento (reuso/reciclaje) de residuos, en particular por medio de su integración en productos o procesos, debe llevarse a cabo en concordancia con la legislación ambiental vigente y evitando impactos adversos al ambiente; esto es, no debe existir perjuicio directo o indirecto al bienestar público.

Es importante diferenciar entre un aprovechamiento de materiales (p.ej. reuso) y un aprovechamiento energético (o reciclaje energético). Para éste último debe tomarse en cuenta el tipo y composición de los residuos (p.ej. poder calorífico).

Principales problemas de contaminación en la industria textil:

- uso excesivo de agua en el enjuague, teñido y blanqueado
- efluentes con temperaturas muy elevadas
- uso excesivo de energía por pérdidas de calor
- efluentes con muy alta demanda biológica de oxígeno (DBO)
- uso excesivo de colorantes y otros químicos
5. Medidas para evitar o minimizar la generación de residuos

Para el aprovechamiento de los residuos deben cumplirse los siguientes requisitos:

- debe existir un método de reuso/reciclaje técnica y económicamente viable,
- debe contarse con una cantidad suficiente de residuos, y
- debe existir un mercado para productos reciclados o reutilizables.

Asimismo, para el aprovechamiento de residuos deben tomarse en cuenta los siguientes aspectos:

- los impactos al ambiente esperados o potenciales,
- la protección de los recursos naturales,
- la energía empleada o generada,
- el posible enriquecimiento o acumulación de sustancias nocivas en productos o en residuos a aprovechar, así como
- la obtención / recuperación de productos.

Dentro de las medidas que a continuación se recomiendan, las marcadas con un asterisco (*) se tomaron de los Conceptos Empresariales de Manejo y Minimización de Residuos, elaborados durante las visitas a 25 empresas representativas del giro textil; es decir, son medidas que éstas industrias reportan estar aplicando o por aplicar. Las demás medidas son recomendaciones de expertos mexicanos y alemanes en la materia, y algunas otras están basadas en los reportes de la USEPA, 1996 \(^6\) y la APEC, 1997 \(^7\).

Aunque el objetivo principal de éstas medidas es minimizar la generación de residuos, muchas de ellas tendrán, además, un efecto positivo en el aumento de productividad y/o ahorro de materiales, agua, energía y otros recursos, así como la protección de los recursos naturales a través de un uso eficiente.

Debe hacerse notar que no todas estas medidas se instrumentan en cada empresa visitada, ni son aplicables a todos los establecimientos de la industria textil. El objetivo es que sirvan como base y puedan ser adaptadas según las necesidades de cada caso particular.

5.1 Medidas relativas a la organización

Como medidas de organización se incluyen medidas para evitar o minimizar la generación de residuos, las cuales no implican necesariamente cambios en los procesos, sustitución de materiales o tratamiento de emisiones. Dentro de estas medidas se incluyen actividades dirigidas a la (al):

⇒ Verificación y control de calidad
⇒ Manejo, separación y reuso de materiales
⇒ Almacenamiento de los residuos
⇒ Inspección y mantenimiento
⇒ Seguridad y modificaciones a la planta.
Figura 5.1-1. Diversas posibilidades para prevenir la generación de residuos en la fuente
Estas medidas de organización tienen como objetivo reducir el volumen de los residuos y en general implican una reorganización en el funcionamiento o las actividades de la planta.

⇒ **Verificación y control de calidad**

- Instrumentar el estándar ISO-9000 (o un sistema de control de calidad similar) para asegurar la calidad de sus productos y reducir el volumen de productos fuera de especificación y por lo tanto la generación de residuos. *

- Llevar un control de los consumos de materia prima, productos químicos y energía.

- Hacer un inventario de las sustancias peligrosas.

- Revisión de todo el proceso, identificando los problemas más serios, así como evaluando las zonas peligrosas y sus consecuencias.

- Desarrollar procedimientos de operación y brindar capacitación a todos los empleados.

- Realizar estimaciones del consumo de agua potable en los diferentes procesos y equipos auxiliares, por ejemplo, teñido, lavado, estampado, calderas, ramas, servicios, etc., con el fin de evaluar si existe un uso excesivo de agua y analizar diversas posibilidades de optimización gradual para disminuir los gastos. *

- Recopilar información de los consumos de agua, colorantes y sustancias auxiliares de otras plantas dentro o fuera del país que tengan el mismo proceso de producción. Esto sirve como punto de comparación de los consumos y, de ser necesario, proceder a implementar medidas para disminuirlos. *

- Determinar en qué puntos de la planta se puede incrementar la eficiencia de algún proceso, por ejemplo: optimizar la preparación de colorantes para el proceso de teñido y evitar la pérdida de material. El color que cae al suelo genera diversos costos: pérdida de materia prima, costo de disposición como residuo peligroso por sus características tóxicas, representando, además, un peligro a la salud.

- Realizar un estudio costo-beneficio para la implantación de equipos de tratamiento, por ejemplo, equipo de ultrafiltración para la recuperación de aprestos sintéticos, no sólo por su valor económico, sino también para reducir agentes poco degradables en el agua residual. La planta de tratamiento generalmente se amortiza por lo menos en 2 años para el caso de las industrias grandes. *

- Una vez establecido el Concepto de Manejo de Residuos, dar seguimiento a las medidas establecidas e identificar y seleccionar los procesos que aún generen residuos.

⇒ **Manejo, separación y reuso de materiales**

- Llevar un registro y control estrictos de los materiales y de las telas a teñir para reducir el margen de productos rechazados y productos a reprocesar por defectos.

- Separar restos de producción que puedan ser reciclados (por ejemplo, las medias y pantimedias dañadas durante el proceso de acabado se pueden reparar, disminuyendo así los volúmenes de desperdicio de pantimedia). *
Separar residuos no peligrosos reciclables como son, residuos de tela, cartón, tarimas de madera, chatarra, plástico, polietileno y vidrio.

Buenas prácticas en el almacenamiento y manipulación de materiales y residuos peligrosos:

- Espaciar y mantener distancia entre contenedores de productos químicos y residuos peligrosos incompatibles
- Utilizar contenedores o materiales de embalaje reutilizables o reciclables
- Mantener los contenedores, bidones y tanques hemáticamente cerrados
- Conservar el área de transporte en el almacén de insumos y residuos bien iluminada, limpia y sin obstáculos

Separar los materiales tóxicos de aquellos que no representan un peligro para la salud o el ambiente. Esto con el fin de reducir el volumen de basura y dar tratamiento adecuado a los residuos tóxicos para reducir su peligrosidad.

Recolectar y almacenar el aceite lubricante gastado (para su reciclaje externo).

Depositar residuos de hebras de hilo y tela impregnados con aceite en un tambor metálico; no depositarlos en el piso para evitar escurrimientos de aceite y reducción del poder calorífico de los mismos, ya que estos pueden utilizarse como combustible alterno (reciclaje interno o externo).

Los conos de plástico y cartón que no sirven para la empresa, pueden intercambiarse por otros que tengan el tamaño adecuado para ser utilizados en las máquinas embobinadoras durante el proceso de enconado. *

No mezclar envases (p. ej. de materia prima) en los contenedores de residuos sólidos municipales.

⇒ Almacenamiento de los residuos

- Se recomienda contar con un almacén de residuos peligrosos* que cumpla con las características especificadas en la normatividad ambiental mexicana (ver sección 5.1); entre ellas cabe destacar las siguientes:
 - requisitos de seguridad específicos (por ejemplo, acceso restringido)
 - muros y fosa de contención para soportar posibles derrames
 - canales de recolección
 - piso con sellado adecuado (por ejemplo, impermeabilizado con resina)
 - extintores compatibles con las sustancias manejadas en las distintas áreas
 - área techada o recipientes cubiertos de la intemperie (aún los vacíos utilizados para el manejo de materias primas y residuos)

- Deberán almacenarse por separado los distintos tipos de residuos (p. ej. área para colorantes, área para aceites usados, estopa impregnada de aceites, etc.).

- Asegurarse que los tambos estén tapados, sellados y etiquetados con los datos básicos de su composición y precauciones para su manejo.
5. Medidas para evitar o minimizar la generación de residuos

- Instalar tarimas de madera para prevenir la corrosión en la base de los tambores por la humedad del suelo.

⇒ **Inspección y mantenimiento**

Un programa de mantenimiento preventivo puede incluir, desde las hojas de instrucciones de mantenimiento para cada equipo; hasta programas informatizados de seguimiento de todas las operaciones y gastos de mantenimiento que incluyan materiales utilizados, horas de trabajo y residuos y emisiones generados en estas operaciones periódicas de inspección, limpieza y mantenimiento, y su valoración económica.\(^8\)

- Aislar correctamente los sistemas de calefacción y conducción de vapor para reducir los consumos tanto de agua como de energía.

- En el área de ramado se recomienda revisar que el sistema de trampas de vapor no deje escapar energía térmica, mediante el uso de instrumentos de inspección ultrasónica que detecten las fugas sin detener la operación; con lo cual se puede reducir el uso de combustible hasta en un 30%.\(^9\)

- Incorporar un programa extensivo de inspección y mantenimiento del sistema de tuberías de agua de la planta para eliminar fugas existentes o prevenir futuras (reduciendo así los consumos de agua, energía y emisiones atmosféricas).

⇒ **Seguridad y modificaciones a la planta**

- Mejorar las condiciones de seguridad e higiene en el almacén de materia prima y de producto terminado, tanto para prevenir incendios, como para evitar posibles derrames.

- Proveer a los operadores con equipo de protección y seguridad adecuados (p. ej. protectores contra ruido en el área de tejido con lanzaderas, guantes de hule, mascarilla, botas, lentes de protección, mandil de hule, etc.) disponibles en todo momento.

- Contar con hojas de seguridad de todas las materias primas que se utilizan. Estas deben estar a la mano y contener la información necesaria sobre la acción a seguir en caso de accidente.

Prácticas para **separar los residuos**:

- Aislar los residuos líquidos de los sólidos
- Separar los materiales peligrosos de los no peligrosos
- Separar los residuos peligrosos según el tipo de sus componentes mayoritarios
5.2 Medidas relativas a los materiales

Como medidas relativas a los materiales se incluyen solamente aquellas que implican un control o una sustitución de las materias primas y materiales o sustancias adicionales utilizadas, por materiales menos dañinos al ambiente, con menor peligrosidad o que pueden ser dispuestos con mayor facilidad.

⇒ **Adquisición de materias primas**

- **Incorporar una política de compra responsable de materias primas:** trabajar conjuntamente con los distribuidores para dar preferencia a materias menos contaminantes.

- **Realizar análisis de las materias primas en cuanto entran a la planta para evaluar su efecto en los distintos procesos y prevenir así costosos errores de producción (p. ej. resultantes de una variación en la calidad o composición de las materias primas).**

- **Acordar con los distribuidores que las materias primas sean distribuidas en contenedores retornables y reusables, que no deban ser lavados en las instalaciones.** Con esta medida se pueden prevenir fugas, reducir la exposición de los trabajadores a los productos químicos, eliminar materiales de empaque y reducir los costos de manejo.

- **Empleo de materias primas homogéneas y menos tóxicas.** La adquisición de diferentes materiales puede implicar cambios en los precios o modificación de los procesos.

- **En algunos casos puede substituirse un tratamiento químico por uno mecánico u otro no-químico.** Por ejemplo, el uso de químicos para desinfección puede substituirse por un equipo de desinfección ultravioleta. Los tiempos de recuperación de la inversión pueden ser relativamente cortos gracias al ahorro de químicos.
5. Medidas para evitar o minimizar la generación de residuos

⇒ **Substitución de sustancias químicas**

<table>
<thead>
<tr>
<th>Químico actual</th>
<th>Substituir por /añadir</th>
<th>Ventajas / observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acido fórmico</td>
<td>Acido acético</td>
<td>Reduce la DBO en los efluentes del teñido</td>
</tr>
<tr>
<td>Detergentes no biodegradables</td>
<td>Detergentes biodegradables</td>
<td>Disminuyen la carga de contaminantes en las aguas residuales y facilitan su tratamiento</td>
</tr>
<tr>
<td>Encimas para ablandar el almidón</td>
<td>Peróxido de hidrógeno</td>
<td>Genera CO₂ y agua en vez de almidón hidrolizado que eleva la DBO</td>
</tr>
<tr>
<td>Hipoclorito o clorito de sodio</td>
<td>Peróxido de hidrógeno</td>
<td>Ventajas técnicas y ecológicas en el blanqueo</td>
</tr>
<tr>
<td>Productos base solvente (limpieza de máquinas)</td>
<td>Productos base agua</td>
<td>Disminuye la carga de contaminantes en el agua residual y las emisiones de compuestos orgánicos volátiles (COV)</td>
</tr>
<tr>
<td>Productos con Cromo</td>
<td>Químicos equivalentes sin Cromo*</td>
<td>Reduce la carga de Cromo en las aguas residuales y el riesgo de exposición a compuestos tóxicos</td>
</tr>
<tr>
<td>Químicos auxiliares como los fosfatos</td>
<td>Acido acético y EDTA</td>
<td>Reduce la carga de fosfatos en el agua residual</td>
</tr>
<tr>
<td>Reactivos</td>
<td>Combinar con nuevos agentes de lavado</td>
<td>Incrementar la eficiencia de lavado, disminuir el consumo de agua e incrementar la velocidad de reacción.</td>
</tr>
<tr>
<td>Sulfato de sodio</td>
<td>Cloruro de sodio</td>
<td>Reducir la concentración de sulfatos en las aguas residuales</td>
</tr>
<tr>
<td>Colorantes</td>
<td>Añadir reactivos para mejorar la fijación del color</td>
<td>Reduce la cantidad de colorante que no reacciona y la degradación en los baños usados, aumentando las posibilidades de reuso de las aguas de lavado</td>
</tr>
<tr>
<td>Colorantes con Cobre</td>
<td>Colorantes sin Cobre (en general tintes menos tóxicos)</td>
<td>Reduce la carga de metal en el agua residual; puede sacrificar el rango de sombras de color alcanzado (reducen la carga de contaminantes en el agua residual y disminuyen los riesgos del personal expuesto)</td>
</tr>
<tr>
<td>Colorantes dispersos y reactivos</td>
<td>Reactivos de alta temperatura (permiten la aplicación simultánea de colorantes dispersos y reactivos)</td>
<td>Reducen la energía necesaria y eliminan la necesidad de un baño cáustico posterior al teñido disperso</td>
</tr>
<tr>
<td>Colorantes económicos (tipo chino)</td>
<td>Colorantes tipo europeos</td>
<td>Ahorro de tiempo, agua y energía (se recomienda hacer una evaluación previa de todos los costos involucrados)</td>
</tr>
</tbody>
</table>
5.3 Medidas relativas a los procesos

Como medidas relativas a los procesos, se incluyen solamente aquellas que implican cambios en los procesos de producción, incluyendo la substitución de maquinaria. Esto puede implicar no solamente un incremento en la eficiencia de producción y disminución en los requerimientos de materia prima, sino también una reducción de los volúmenes de residuos generados y/o un cambio en las características de los mismos (por ejemplo, disminución de su toxicidad).

Para realizar cambios en los procesos es fundamental recolectar y analizar lo más detallado posible la siguiente información:

- Recolectar datos del proceso
- Preparar un diagrama de flujo
- Realizar balances de materia y energía
- Asignar costos a los flujos de residuos
- Revisar el proceso para identificar posibles causas de generación de los residuos

⇒ Modificaciones/optimización

- Contar con sistemas de control (por ejemplo, numérico) para optimizar las condiciones de proceso como son la temperatura y tiempo. *

- Verificar si las máquinas utilizadas son las adecuadas para el tipo de productos y materiales, evitando así fallas constantes que ocasionen daños a los primeros o desperdicio de los segundos.

- Mantener los baños de teñido a una concentración constante añadiendo colorante, con la finalidad de reducir el volumen de agua empleada.

- Extendiendo el tiempo de teñido se puede disminuir de manera importante el contenido de amoníaco, DBO y DQO, así como la concentración de grasas y aceites en los efluentes.

- Tiñendo en sucesión grandes cantidades de tela de un mismo color, puede instalarse un enjuague a contracorriente dentro del equipo de teñido de chorro, reduciendo aún más el consumo de agua mientras se mantiene la calidad del producto final.

- Modificar las técnicas de enjuague empleando colorantes con mayor poder fijador y colocando chorros de agua a presión para eliminar los productos no fijados de manera más enérgica. Con ello se puede reducir el consumo de agua hasta en un 50%.

- Incrementando la presión del agua se disminuye el tiempo del ciclo de procesamiento de telas.

- Controlar el caudal de agua utilizada en los distintos procesos (p. ej. proceso de limpieza de las bandas en el estampado).

- Trabajar en un ambiente húmedo, en las áreas de tejido, generado con vapor de agua para evitar que durante el proceso se rompan los hilos y se obtengan telas de mala calidad. *

- Realizar el descude de los hilos para eliminar las impurezas, asegurando una mejor penetración de los colorantes en la fibra de los hilos durante el teñido. *

- Utilizar maquinaria de teñido con proporciones de solución bajas (low-liquor ratio), p.ej., teñido a chorro. Con
5. Medidas para evitar o minimizar la generación de residuos

El lavado a contracorriente permite reusar el agua menos contaminada del último lavado para el penúltimo y así sucesivamente hasta que el agua llega al primer paso de lavado. El agua del primer lavado es entonces descargada (ver figura 4-2).

• Combinando procesos, por ejemplo lavado y blanqueado, se puede ahorrar agua y energía (se recomienda evaluar la calidad de los productos antes de combinar procesos).

Tabla 5.3-1. Ahorros típicos de agua usando lavado a contra-corriente

<table>
<thead>
<tr>
<th>Número de pasos de lavado</th>
<th>Ahorro de agua (porcentaje)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
</tr>
</tbody>
</table>

⇒ **Substitución de maquinaria**

• Las máquinas tejedoras *tricot* y circulares cuentan con sensores integrados que detectan el rompimiento de algún hilo e inmediatamente se detiene el proceso y se procede a realizar la unión de la ruptura para proseguir con el proceso de tejido. *

• Utilizar maquinaria de calidad controlada como las máquinas tipo *Foulard*. *

• Substituir la maquinaria obsoleta con maquinaria de vanguardia con mayor capacidad de producción, menor consumo de energía y aceite, y menores costos de mantenimiento correctivo. *

⇒ **Substitución de maquinaria**, deberían analizarse las posibilidades de *optimización de los procesos*, para evitar desperdicio de materia prima, energía, agua, etc., pudiendo así obtener **ahorros significativos** con una inversión mínima

• Instalar sistemas automatizados para controlar las características del proceso de termofijado de la tela, controlando temperatura y la cantidad de vapor a suministrar de acuerdo con las características específicas de la tela. *

• Cambiar los procesos de fabricación y acabado de telas por un sistema sólido en sólido (SOS) el cual emplea químicos que se aplican directamente sobre la tela en lugar de utilizar agua, evitando así pérdidas por evaporación. **Medidas relativas a las emisiones y/o residuos**

5.4 **Medidas relativas a las emisiones y/o residuos**

En este inciso se incluyen medidas relativas al manejo o tratamiento de las emisiones (atmosféricas, aguas residuales) y residuos generados; por ejemplo, el tratamiento de las aguas residuales mediante la instalación de una planta de tratamiento en la empresa, o la captura de pelusa y de los gases producidos en la engomadora, termofijadora, secadora, forradora y estampadora, mediante sistemas de extracción.
Las aguas residuales de los distintos procesos deben ser tratadas y reutilizadas, por ejemplo en procesos que requieran agua de menor calidad como pueden ser el descruce, el lavado o primer enjuague, o reutilizarla en los sanitarios.

Entre las etapas de tratamiento de aguas deberá considerarse un pretratamiento y un tratamiento primario (p. ej. igualación, neutralización, posible desinfección), un tratamiento secundario (p. ej. aireación, reducción y oxidación químicas, coagulación, filtración, evaporación, tratamiento biológico) y de ser necesario un tratamiento terciario (p. ej. estanques de estabilización, adsorción con carbón activado, intercambio iónico, electrodiálisis, ósmosis inversa, ultrafiltración).

A continuación se mencionan las medidas que ya se están realizando en algunas de las empresas visitadas, así como las recomendadas.

- Evitar mezclar las aguas de proceso con las aguas municipales, para evitar que los compuestos tóxicos trastornen el balance de crecimiento bacteriano de las corrientes biodegradables, así como para excluir flujos que no requieren tratamiento. *

- Renovar con regularidad el lecho de carbón activado de los filtros mejorando así la calidad del agua tratada. *

- Una decarbonización del filtro ácido permite reducir la concentración de ácido sulfúrico en el efluente.

- Plantearse como objetivo la recirculación de las aguas residuales a los procesos y/o servicios y así disminuir significativamente las descargas de la planta (mediante el tratamiento y recirculación interna de las aguas residuales las descargas pueden disminuirse hasta en un 80%).

 - Si no se cuenta con una planta de tratamiento, enviar las aguas residuales a una instalación externa para su tratamiento. Esto es viable siempre y cuando la planta de tratamiento esté cerca de la empresa de modo que los costos por transporte no sean demasiado elevados. *

- Evaluar la posibilidad de instalar sistemas de intercambio iónico para reducir el contenido de sales en el agua residual. *

- En caso de no poder dar un tratamiento al agua residual a corto plazo, se recomienda por lo menos neutralizarla y enfriarla antes de descargarla a la red central. *
5. Medidas para evitar o minimizar la generación de residuos

- Analizar el agua residual generada en los distintos procesos y determinar el método de tratamiento más adecuado con base al tipo y cantidad de contaminantes.

- Evaluar tanto técnica como económicamente la mejor opción para implementar un sistema de tratamiento de aguas que permita reusarlas, obteniendo así ahorros significativos en su consumo.

- Realizar pruebas de laboratorio del agua tratada para ver en que proceso puede reusarse.

- Analizar los lodos generados en la planta de tratamiento de aguas (análisis CRETIB, con laboratorios certificados por el INE para determinar su peligrosidad) y darles un tratamiento adecuado (p. ej. biológico) antes de disponerlos.

- Determinar la eficiencia de los sistemas de tratamiento y los requerimientos de calidad del agua del proceso, antes de instalar un sistema de ósmosis inversa o ultrafiltración.

- Construir una fosa para captar el agua tratada y reutilizarla.

- Instalar un sistema de ozonización para eliminar la dureza del agua almacenada en las cisternas.

- Los efluentes líquidos del proceso de fabricación de textiles debe seguir las siguientes etapas de tratamiento:

 - **Tratamiento preliminar**, para la remoción de arena y sólidos que formen parte de la corriente.
 - **Tratamiento primario**, para la remoción del material sedimentable y flotable.
 - **Tratamiento secundario**, para retirar toda la materia orgánica biodegradable.
 - **Tratamiento terciario**, para eliminar materiales resistentes al tratamiento secundario.

 \[\Rightarrow\] **Baños de teñido**

Los baños de teñido pueden reutilizarse teñiendo primero colores claros y avanzando hacia tonos más oscuros, lo que da como resultado una reducción en la carga de contaminantes en los efluentes y en la cantidad de químicos empleados. Para ello, los baños de teñido pueden ser recargados con químicos de teñido cuando el nivel de hidrólisis de las moléculas del colorante sea bajo y ser reutilizados repetidamente.
Figura 5.4-1. Reutilización de los baños de teñido de tonos claros a obscuros

⇒ Materiales / sustancias

En la industria textil se generan muchos residuos que pueden ser reusados y/o reciclados interna o externamente. Por ejemplo, algunos residuos pueden venderse a compañías recicladoras o regalarse a cambio de su recolección y transporte. A continuación se mencionan algunas alternativas.

- Reutilizar como materia prima los conos de plástico en los que llega el hilo.

- Los conos de plástico y cartón que no sirven para la empresa, podrían intercambiarse por otros que tengan el tamaño adecuado para ser utilizados en las máquinas embobinadoras durante el proceso de enconado. También pueden triturarse para reciclarlos en la fabricación de conos nuevos. *

- Regresar al proveedor los carretes de plástico y júllos para su reuso. *

- Las pantimedias que se dañan durante el proceso de acabado pueden repararse, disminuyendo así los volúmenes de desperdicio de pantimedia. *

- Los residuos de hilo se pueden utilizar externamente en la fabricación de estopas. El hilo sobrante y estopa también pueden transformarse externamente en hilo con acabado rústico o material para relleno. *
5. Medidas para evitar o minimizar la generación de residuos

- **Recolectar, compactar y empaquetar la pelusa para venderla posteriormente.** *
- **Regresar los ganchos rotos al proveedor para su reciclaje.** *
- **Separar los residuos no peligrosos reciclables (restos de tela, hilo, papel, cartón, tarimas de madera, chatarra, polietileno, vidrio etc.) para su reciclaje o reuso externos.**
- **Separar los materiales residuales y compactar la basura municipal lo más posible para minimizar costos por disposición.**
- **Enviar la chatarra metálica a una compañía fundidora para su reciclaje.** *
- **Instalar una máquina que procese la pelusa colectada en un sistema vía húmeda y la compacte y empaquete para venderla posteriormente.** *
- **Contar con un sistema de extracción-limpieza de vapor por medio de campanas de extracción y tuberías y un sistema de limpieza en dos pasos, con el que se limpie el vapor contaminado generado en los sistemas de planchado, retornando aire caliente a las diferentes máquinas.** *
- **Instalar equipos extractores de compuestos orgánicos volátiles (COV's) en el almacén de sustancias químicas y colorantes.** *

⇒ **Energía**

Dado que los baños de teñido (entre otros) requieren ser posteriormente enfriados para mantener los límites de temperatura permitidos en las condiciones de descarga, el contenido de energía (calor) de los baños calientes puede recuperarse, mediante intercambiadores de calor, y reusarse para calentar el agua que se utiliza en otros procesos de producción; a este proceso se le conoce también como cogeneración y puede ser muy rentable.
⇒ **Materias engomantes**

Es factible recuperar sustancias engomantes (p. ej. carboximetil celulosa y derivados, alcohol polivinílico) muy utilizados para engomar fibras sintéticas y naturales. También es posible considerar la utilización de gomas acuosolubles de acrilo que representan una recuperación más sencilla.

En cualquier caso, para reutilizar estas sustancias químicas se debe tener presente:

- utilizar la menor cantidad posible de agua
- trabajar a temperaturas bajas (25°C)
- emplear tiempos más cortos para el engome

Los engomantes de carboximetil celulosa pueden precipitarse utilizando sales de aluminio o se adsorben en carbón activado.

⇒ **Recuperación cáustica**

Una recuperación cáustica de la solución de hidróxido de sodio empleada en el mercerizado, puede llevarse a cabo mediante la concentración por evaporación, filtración, centrifugación y flotación de las soluciones.

⇒ **Recuperación de sales**

En los baños de teñido por agotamiento con una concentración de sal por arriba de los 100 g/l, ésta puede ser recuperada. Para ello, se plantea el reuso del concentrado directamente en el proceso y el reuso del agua. A continuación, el líquido que contiene la sal junto con el primer baño de enjuague deberán estar sujetos a un proceso de ultrafiltración (el tiempo de amortización de la inversión en este equipo es por lo menos de 3 años, por la recuperación de sal).

⇒ **Otros**

En la industria textil se generan corrientes residuales a partir de las cuales pueden recuperarse distintas sustancias y/o materiales, disminuyendo así el consumo de materias primas y aprovechamiento (reuso/reciclaje) de sustancias y materiales es fundamental no mezclar corrientes con características distintas.

! La energía en forma de calor puede recuperarse (en intercambiadores de calor) y utilizarse p.ej. para calentar agua. Este proceso conocido como "cogeneración" puede ser muy rentable ya que disminuye los costos por consumo de energía y reduce la temperatura de los efluentes.

! Antes de seleccionar las posibles medidas mencionadas es necesario:

- Evaluación de factibilidad técnica
- Evaluación de factibilidad económica
- Evaluación aspectos ambientales
- Selección de medidas para adoptarlas
A continuación se presentan algunas alternativas para reducir los desechos líquidos a partir de modificaciones realizadas en los procesos. Se emplean técnicas avanzadas relacionadas con los baños de teñido para procesamiento acuoso, medios alternos de aplicación y aumento en la eficiencia del lavado.

Tabla 5.4-1. Alternativas de cambios de procesos

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>EJEMPLO</th>
<th>BENEFICIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teñido con almohadillas de lotes</td>
<td>Transferencia del colorante al algodón, rayón y materiales mezclados mediante rodillos (método continuo)</td>
<td>Reducción en el empleo de agua (2 gal/lb vs. 20 en becks), energía (2000 vs. 9000 BTU/lb) y químicos; aumento de la productividad</td>
</tr>
<tr>
<td>Teñido de bajo contenido de licor</td>
<td>Reducción en la cantidad del agua (solución) empleada para teñir un cierto peso de materiales</td>
<td>Fijación mejorada del colorante, amplia reducción en el consumo de energía y de agua en el teñido (pero no necesariamente en subsecuentes pasos de lavado)</td>
</tr>
<tr>
<td>Tecnología de Espuma</td>
<td>Aplicación de colorantes a través de un medio de espuma (aire disperso en un líquido) u otros disolventes para teñido y estampado (terminado y preparado)</td>
<td>Reducción en el consumo de energía y agua, reducción de los desechos químicos y de los tiempos de secado requeridos</td>
</tr>
<tr>
<td>Tecnología de Aspersión</td>
<td>Aplicación de terminados empleandoaspersores (sprays)</td>
<td>Reducción en el consumo de energía y agua, reducción de los desechos químicos (la mayoría del terminado permanece en la tela)</td>
</tr>
<tr>
<td>Tecnología de Lavado</td>
<td>Lavado de contracorriente, lavadores de chorro con paletas vibrantes, medios mecánicos para lograr mayores turbulencias</td>
<td>Mayor eficiencia en el lavado, reduciendo así el consumo de agua y energía</td>
</tr>
<tr>
<td>Consolidación de Procesos</td>
<td>Secuencia de lavado al vapor con almohadilla sencilla, empleando combinaciones únicas de químicos</td>
<td>Menor consumo de energía y agua, menores niveles de sal en los efluentes y menores tiempos de proceso</td>
</tr>
</tbody>
</table>
6. Vías de manejo, tratamiento y disposición final de residuos

Cada empresa debería contar con un Manual de Control de Calidad en el cual se describan las medidas de operación, organización y comportamiento que comprendan todos los niveles del organigrama empresarial. El tipo de medidas a incluir en este manual deberían ser en general realizables a bajos costos y no requerir de grandes esfuerzos; se trata en muchos casos de medidas de organización a todos los niveles.

6.1 Almacenamiento interno

Generalmente, los residuos, tanto los no peligrosos como los peligrosos, deben almacenarse en las empresas de tal forma que no presenten riesgos ni para los trabajadores, ni para los vecinos y el medio ambiente. El sistema de almacenamiento debe prevenir los riesgos a través de las medidas técnicas y administrativas establecidas en la normatividad en materia de manejo de sustancias, materiales y residuos peligrosos.

En el mismo sentido, se deberá cumplir con los requerimientos establecidos en la normatividad en materia de seguridad, higiene y medio ambiente laboral para prevenir derrames y/o accidentes en los cuales se pudieran generar residuos peligrosos.

6.2 Medidas de gestión y organizativas

Los lineamientos a incluir en el Manual de Control de Calidad de cada empresa son necesarios porque permiten reducir los efectos de eventuales fallas en la operación, de manera que estas no lleguen a convertirse en un incidente mayor. La presentación de las medidas podrá incluirse en las instrucciones de operación para cada área, en una forma concreta y clara. A continuación se presentan las medidas más relevantes respecto al manejo de sustancias y/o residuos peligrosos:

- La instalación y operación de sistemas de almacenamiento requiere de la previa autorización de la Secretaría de Medio Ambiente, Recursos Naturales y Pesca (a través del Instituto Nacional de Ecología).

- Los movimientos de entrada y salida de residuos peligrosos del área de almacenamiento deberán registrarse en una bitácora, indicando fecha de movimiento, origen y destino del residuo peligroso.

- Descripción de la ejecución de las tareas laborales de los empleados.

- Las instrucciones de operación contendrán todas las instrucciones preventivas, operativas y de seguridad para el personal.

- Determinación de medidas de seguridad, para el manejo de sustancias y residuos peligrosos y para la atención a contingencias.

- Se señalarán las áreas donde se almacenan residuos, en especial residuos peligrosos. El señalamiento resaltará las características de peligro de los residuos peligrosos a almacenar temporalmente.

- Las instalaciones deben estar protegidas contra el acceso de personas no autorizadas o ajenas y los reglamentos al respecto deben estar expuestos en los lugares de posible acceso.

- Los empleados que manejan sustancias peligrosas deben ser capacitados...
periódicamente sobre el manejo adecuado de éstas. La capacitación deberá incluir también el entrenamiento y la actualización en primeros auxilios, el mantenimiento de equipos de seguridad y el manejo de vehículos y operación de máquinas (por ejemplo montacargas).

6.3 Medidas técnicas

Seguridad

- Las áreas de almacenamiento de residuos deben estar separadas de las áreas de producción, servicios, oficinas y de almacenamiento de materias primas o productos terminados.

- El tipo y tamaño de las áreas de almacenamiento deben corresponder al tipo, cantidad, composición y consistencia, a las características de peligrosidad de los residuos, tomando en consideración su incompatibilidad, de acuerdo a la NOM-054-ECOL-1993.

- No deben almacenarse residuos peligrosos en cantidades que excedan la capacidad instalada del sistema de almacenamiento.

- Contar con señalamiento y letreros alusivos a la peligrosidad de los residuos, en lugares y formas visibles.

- En el caso de almacenes no techados, no deberán almacenarse residuos peligrosos a granel, cuando éstos produzcan lixiviados.

- Contar con pasillos lo suficientemente amplios, que permitan el tránsito de montacargas mecánicos, eléctricos o manuales, así como el movimiento de los grupos de seguridad y bomberos en caso de emergencia.

Protección contra incendio y explosión

- Las áreas de almacenamiento para residuos inflamables deben equiparse con dispositivos de alarma y con sistemas de extinción de incendios. En caso de hidratantes, estos deberán mantener una presión mínima de 6 Kg/cm2, durante por lo menos 15 minutos. El equipo de alarma contra incendio debe estar conectada con una central, vigilada permanentemente por personal.

- En las áreas de almacenamiento cerradas, las paredes deben estar construidas con materiales no inflamables.

- En las áreas donde puede generarse una atmósfera explosiva, deben instrumentarse medidas contra explosiones para evitar acumulación de vapores peligrosos. Las instalaciones eléctricas deben ser diseñados a prueba de explosión.

- Se deben instalar equipos para la extracción de gases y vapores tóxicos y explosivos, cuando estas emisiones puedan ser liberadas por los residuos en espacios cerrados.
En el caso de almacenes cerrados, las instalaciones de ventilación forzada y extracción deben tener una capacidad de recirculación de por lo menos seis cambios de aire por hora. La ventilación debe surtir efecto también a nivel del piso.

El aire saturado de las áreas de almacenamiento cerradas y de los lugares de trabajo debe ser captado, de manera lo más eficientemente posible, y tratado para evitar la generación de emisiones atmosféricas contaminantes.

Los almacenes abiertos, sin techos, deben contar con pararrayos, detectores de gases o vapores con alarma auditiva, cuando se almacenan residuos volátiles.

En las áreas de producción donde se almacenan sustancias o combustibles inflamables, que se utilicen como materia prima, las cantidades almacenadas deben limitarse a un día de trabajo.

El llenado de sustancias inflamables o combustibles debe realizarse con equipo de seguridad, el cual debe tener conexión a tierra.

Peligrosos para la industria textil

Un manejo adecuado de los residuos peligrosos implica, entre otros:

- Separación y almacenamiento de los residuos de acuerdo a su compatibilidad
- Marcado legible de los contenedores
- Distribuir a los trabajadores la información básica necesaria sobre los residuos a manejar.

Las áreas de almacenamiento de líquidos, deben contar con equipos y/o sistemas de absorción, muros de contención y fosas de retención con capacidad de contener una quinta parte de lo almacenado, para la captación y eliminación de los derrames de los residuos o lixiviados.

- Los pisos deben contar con trincheras o canaletas que conduzcan los derrames a las fosas de retención.

Seguridad en el trabajo

- Los equipos de protección deben estar disponibles para los trabajadores.
- En las áreas donde se almacenan residuos que son sustancias tóxicas y...
6. Vías de manejo, tratamiento y disposición final de residuos

corrosivas deben instalarse regaderas de emergencia y lavadores de ojos.

- Deben instalarse sistemas de comunicación para casos de emergencia (interfono, teléfono, alarmas acústicas y ópticas).

- Deben estar disponibles equipos para la limpieza de las áreas de almacenamiento y de trabajo.

- Deben garantizarse que exista un alumbrado de emergencia que ilumine suficientemente las rutas de evacuación y las áreas de trabajo.

- Las puertas de emergencia se deben abrir en la dirección a la salida de la evacuación (hacia afuera) y cerrarse automáticamente.

6.4 Etiquetado

Con el fin de garantizar un transporte seguro de todos los residuos que pueden generar un riesgo, deberá realizarse la clasificación y el señalamiento de los mismos.

A continuación, se presentarán los requerimientos relevantes referente a la clasificación y el etiquetado de los residuos, así como a los documentos de carga obligatorios en el transporte y las hojas de datos de seguridad:

- Los residuos peligrosos a transportar deben ser etiquetados de acuerdo a las clases principales, subclases, señalando el número UN (Número de Naciones Unidas) y el tipo de embalaje (tablas NOM-003-SCT-1994).

- Las sustancias no indicadas en éstas tablas (por ejemplo mezclas) se clasificarán por el remitente mismo (generador de residuos). Esta clasificación se presentará ante la Secretaría de Comunicaciones y Transporte, para su análisis y conocimiento. En el caso de mezclas, la clasificación se orientará en el componente más peligroso.

- Los empaques de sustancias peligrosas tienen que ser codificados con etiquetas resistentes a la intemperie, de acuerdo al formato de los rótulos de riesgo especificado en la NOM-003-SCT2/1994. Los rótulos se aplicarán centrados en la lateral.

- Las unidades de transporte en carretera o en ferrocarril tienen que estar equipadas con placas de advertencia, bien legibles, que deben contener, como mínimo, la siguiente información (NOM-004-SCT2/1994):
 a) Características principales de la peligrosidad de la sustancia transportada, sus características químicas y físicas.
 b) El número de identificación UN.

- Los rótulos son obligatorios también en contenedores impregnados con residuos.

- La siguiente información específica para identificar los residuos peligrosos transportados, se indicará en el Documento de Embarque y en los formatos con los datos de seguridad:
 c) La determinación oficial de la sustancia transportada según el listado que se presenta en la NOM-002-SCT2/1994.
 d) Clases y subclases de la sustancia. En el caso de las sustancias de la clase 1 (explosivos), deberán registrarse adicionalmente los grupos de compatibilidad, que se describen en la NOM-009-SCT2/1994.
e) El número UN y el número de envase y embalaje.

f) Volumen y masa de la sustancia peligrosa transportada.

- En el transporte de residuos se predecirá la denominación "residuo".

- En sustancias que requieren de una regulación de temperatura (subclase 4.1, sólidos inflamables, así como subclase 5.2 peróxidos orgánicos), se indicarán la temperatura de control y la temperatura en caso de emergencia. Aparte, se indicará el riesgo secundario 4 "explosivo".

- El documento de Información de emergencia debe contener la descripción de la sustancia, los números telefónicos de especialistas en seguridad, y los procedimientos a seguir en caso de emergencia.

- Deben determinarse los requerimientos especiales para las sustancias de las clases 1 y 5.2. Esto concierne también la compatibilidad en el transporte y en el almacenamiento conjuntos (NOM-025-SCT2/1994).

6.5 Transporte

Para el transporte de sustancias no peligrosas no existen requerimientos especiales, pero para el transporte de residuos peligrosos deben considerarse el Reglamento y la normatividad vigente que emite la Secretaría de Comunicaciones y Transporte en materia de sustancias, materiales y residuos peligrosos, que toma en consideración los posibles riesgos que los residuos puedan implicar.

De la normatividad en materia se desprenden los siguientes requerimientos de seguridad:

- En cuanto a la carga y descarga seguras de los contenedores y su fijación en el transporte por ferrocarril; los conductores de los camiones de carga deben ser capacitados periódicamente, por lo menos en lo que se refiere a la carga y a la descarga de las pipas de gasolina (NOM-SCT2/1994).

- Para el transporte de residuos y materiales peligrosos es necesario contar con un documento que contenga la información básica relativa a la identificación, riesgos y medidas de emergencia para su transporte (NOM-043-SCT2/1994).

6.6 Costos del manejo de residuos

Hoy en día, los costos de disposición de los residuos, en especial de los residuos peligrosos, para las industrias son significativamente altos como para ser ignorados por los generadores. En este sentido, es fundamental que cada empresa desarrolle un Concepto Empresarial de Manejo de Residuos Peligrosos. Este instrumento básico de planificación permite tener transparencia en cuanto a la generación y manejo de los residuos dentro de la empresa e instrumentar las medidas más significativas que conduzcan a la reducción de los costos de disposición. Debe hacerse notar, que los costos de disposición de residuos en México, con la puesta en operación de los CIMARI's, se incrementará en los próximos años al igual como ha estado sucediendo en otros países. Es necesario entonces remarcar aquí, la importancia y el significado que tiene la minimización de residuos, aún cuando las instalaciones de manejo y disposición de residuos en México estén en
etapa de desarrollo y no se hayan establecido aún datos numéricos uniformes.

Durante las visitas se observó una falta de experiencia y conocimiento sobre los costos de disposición de residuos. Muchas empresas no pudieron dar cifras aunque fuesen aproximadas. Así, se obtuvieron en algunos casos amplios rangos de costos para residuos del mismo tipo. Esta variación puede deberse a lo siguiente:

- contabilidad inadecuada o insuficiente y el consecuente desconocimiento de los costos reales,
- el manejo de cantidades pequeñas y mínimas, el cual, calculado por tonelada, es mucho más costoso que el manejo de grandes cantidades (incluyendo los costos de transporte),
- la variación en los costos de transportación,
- diferentes métodos de manejo y/o tratamiento para un mismo residuo.

Con el objetivo de dar una visión general sobre los costos de disposición y su rango, en la tabla 7-1 se presentan los costos por tonelada tomados de los *Conceptos Empresariales de Manejo de Residuos* realizados durante las visitas.

Una reducción en los costos de manejo de residuos industriales puede lograrse mediante:

- evitar mezclar residuos de distintos tipos, especialmente residuos peligrosos con no peligrosos
- la recolección por separado de distintos tipos de residuos
- elevar la conciencia ambiental y de calidad en el personal de la empresa
- la unión de empresas generadoras de pequeñas cantidades de residuos para formar "asociaciones de generadores de residuos" y reducir así los costos de manejo.

Tabla 6.6-1. Costos de eliminación de residuos generados por la industria textil

<table>
<thead>
<tr>
<th>Residuo</th>
<th>Costos en pesos por tonelada [$/t]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite lubricante gastado</td>
<td>140.00–800.00</td>
</tr>
<tr>
<td>Basura</td>
<td>8.00 – 32.00*</td>
</tr>
<tr>
<td></td>
<td>6.60 – 167.00</td>
</tr>
<tr>
<td>Borra y estopa</td>
<td>Se vende para reciclaje: 400.00</td>
</tr>
<tr>
<td>Cubiertas (Poliéster)</td>
<td>167.00</td>
</tr>
<tr>
<td>Fibro Cemento (Poliéster - Nylon)</td>
<td>167.00</td>
</tr>
<tr>
<td>Fieltros (Polipropileno)</td>
<td>167.00</td>
</tr>
<tr>
<td>Lonas (Poliéster)</td>
<td>167.00</td>
</tr>
<tr>
<td>Residuos no peligrosos</td>
<td>45.00</td>
</tr>
<tr>
<td>Residuos sólidos Municipales</td>
<td>10.5 – 500.00</td>
</tr>
<tr>
<td></td>
<td>100.00*</td>
</tr>
<tr>
<td>Telas de formación (Nylon)</td>
<td>167.00</td>
</tr>
</tbody>
</table>

* siempre y cuando no se especifiquen otras unidades

* considerando un peso volumétrico de 200Kg/m3
6.7 Vías alternativas para el reciclaje, reuso, tratamiento y disposición final de residuos.

A continuación se presentan las vías de manejo más razonables para los residuos, tomando como referencia los tipos de manejo establecidos en el reglamento técnico TA ABFALL11 de Alemania y tomando en consideración la Ley de manejo en ciclo o recirculación (Kreislaufwirtschaftsgesetz, 1996).

Algunas de las alternativas de tratamiento de los residuos aún no se encuentran disponibles en México. Sin embargo, se espera que en un futuro próximo se encuentren en funcionamiento los primeros Centros Integrales de Manejo de Residuos Industriales que ofrezcan estas alternativas.

Es necesario, tomar en cuenta las concentraciones máximas de los distintos componentes presentes en los residuos para elegir el método de manejo adecuado, es decir el tratamiento, aprovechamiento o la disposición final de residuos.

En la siguiente tabla, cuando se presenta más de un método de manejo recomendado, estos se han ordenado de acuerdo a la preferencia del método a emplear. El Instituto Nacional de Ecología (ver capítulo 7) es la autoridad a contactar para obtener un listado actualizado de empresas autorizadas para llevar a cabo el manejo, reciclaje, reuso y tratamiento de los residuos peligrosos.

La denominación oficial de los residuos a continuación listados puede encontrarse en las tablas 4.6-1, 4.6-2, 4.6-3 y 4.6-6. Los residuos que no se encuentran en estas tablas son aquellos que no están especificados en la norma.

Significado de las claves en la tabla 7-2:

\begin{itemize}
 \item = Reuso interno directo (sin tratamiento).
 \item \(\rightleftarrows\) = Reuso interno de materiales (con tratamiento previo).
 \item A = Reciclaje (tratamiento externo de un material para después reutilizarlo)
 \item g = Aprovechamiento térmico en hornos rotatorios de la industria cementera (combustible alterno)
 \item CPB = Planta de tratamiento físico-químico
 \item HMV = Planta de tratamiento térmico de residuos sólidos municipales
 \item e = Relleno sanitario
 \item 1 = Confinamiento controlado
 \item UTD = Confinamiento subterráneo (en Minas de Sal)
 \item ----- = No hay indicación
\end{itemize}
<table>
<thead>
<tr>
<th>Número INE ó NOM aplicable*</th>
<th>Residuo Denominación oficial Nombre interno</th>
<th>Método de disposición recomendado</th>
<th>Disposición de acuerdo al TA Abfall</th>
<th>Disposición actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPNE1.1/03</td>
<td>Aceite lubricante gastado</td>
<td>A /g /CPB/</td>
<td>/CPB</td>
<td>Se envía como combustible alterno a cimenteras</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se retorna al proveedor para reciclarlo</td>
</tr>
<tr>
<td></td>
<td>Envases y tambos vacíos usados en el manejo de materiales y residuos peligrosos</td>
<td>/1</td>
<td>/1</td>
<td>Se desecha junto con los residuos de producción y la basura de la planta</td>
</tr>
<tr>
<td></td>
<td>Tambos metálicos vacíos impregnados con sustancias químicas</td>
<td>/1</td>
<td>/1</td>
<td>Se retorna al proveedor para reusarlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se envían a una recuperadora que se encarga de lavarlos</td>
</tr>
<tr>
<td></td>
<td>Tambos plásticos de resina acrílica</td>
<td>g/</td>
<td>/HMV</td>
<td>Se entrega gratis</td>
</tr>
<tr>
<td>RP18.1/02</td>
<td>Lodos del sistema de tratamiento de aguas residuales (textiles)</td>
<td>g/ /1</td>
<td>/1</td>
<td>Se envían a relleno sanitario</td>
</tr>
<tr>
<td></td>
<td>Lodos de tratamiento de aguas residuales</td>
<td>g/ /1</td>
<td>/1</td>
<td>Reciben un tratamiento biológico externo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se envían a confinamiento controlado</td>
</tr>
<tr>
<td>RP18.1/01</td>
<td>Tambos y contenedores con residuos de tintes y colorantes</td>
<td>g/ /1</td>
<td>1/e</td>
<td>Se retorna al proveedor para reusarlos</td>
</tr>
<tr>
<td></td>
<td>Cubetas, porrones, tambos impregnados de tintas y colorantes</td>
<td>g/</td>
<td>/HMV</td>
<td>Se envían a una recuperadora que se encarga de lavarlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se envían a relleno sanitario</td>
</tr>
<tr>
<td>RP18.1/04</td>
<td>Residuos de detergentes, jabones y agentes dispersantes</td>
<td>----</td>
<td>----</td>
<td>Red de alcantarillado</td>
</tr>
<tr>
<td></td>
<td>Agua residual de los procesos de pretratamiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP18.1/05</td>
<td>Residuos ácidos o alcalinos</td>
<td>)/g/CPB/</td>
<td>/UTD CPB/UTD/ /1</td>
<td>Red de alcantarillado</td>
</tr>
<tr>
<td></td>
<td>Soluciones residuales de pruebas analíticas en el laboratorio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOM-052-ECOL-1993*</td>
<td>Hebra y trapos impregnados con aceite lubricante gastado</td>
<td>g/</td>
<td>/1</td>
<td>No tiene manejo externo</td>
</tr>
<tr>
<td>Número INE ó NOM aplicable*</td>
<td>Residuo</td>
<td>Denominación oficial Nombre interno</td>
<td>Método de disposición recomendado</td>
<td>Disposición de acuerdo al TA Abfall</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>NOM-052-ECOL-1993</td>
<td>Trapos contaminados con thinner y pintura</td>
<td>g/ /HMV</td>
<td></td>
<td>Se envían como combustible alterno para su incineración.</td>
</tr>
<tr>
<td>S/N</td>
<td>Residuos municipales (basura de la planta)</td>
<td>A /e</td>
<td>----</td>
<td>Se envía a relleno sanitario. Se envía a tiradero municipal.</td>
</tr>
<tr>
<td></td>
<td>Bobinicas de plástico</td>
<td>/ A /</td>
<td>----</td>
<td>Reuso</td>
</tr>
<tr>
<td></td>
<td>Bolsas de plástico</td>
<td>/c/ g</td>
<td>----</td>
<td>Se envía a tiradero municipal. Se envían a reciclaje</td>
</tr>
<tr>
<td></td>
<td>Borra y estopa</td>
<td>A /g/ /HMV /</td>
<td>/HMV</td>
<td>Se envían a reciclaje</td>
</tr>
<tr>
<td></td>
<td>Cartón y material de empaque</td>
<td>/ A /</td>
<td>----</td>
<td>Se envían a reciclaje Se regala para su reciclaje a cambio de su recolección y transporte Se envía a relleno sanitario.</td>
</tr>
<tr>
<td></td>
<td>Chatarra</td>
<td></td>
<td></td>
<td>Se vende para reciclarla</td>
</tr>
<tr>
<td></td>
<td>Conos de cartón</td>
<td>/ A /c/ /g</td>
<td>----</td>
<td>Reciclaje. Los conos son pulverizados para fabricar conos nuevos Se retorna al proveedor para reusarlos</td>
</tr>
<tr>
<td></td>
<td>Conos de plástico</td>
<td>/ A /c/ /g</td>
<td>----</td>
<td>Reciclaje. Los conos son pulverizados para fabricar conos nuevos.</td>
</tr>
<tr>
<td></td>
<td>Cubiertas (Poliéster)</td>
<td>/ A /c/ /g</td>
<td>----</td>
<td>Se envía a tiradero municipal.</td>
</tr>
<tr>
<td></td>
<td>Desperdicio de pantímedias</td>
<td></td>
<td></td>
<td>Se entregan gratis los recortes a cambio de su recolección y transporte</td>
</tr>
<tr>
<td></td>
<td>Desperdicios de tela</td>
<td></td>
<td></td>
<td>Reuso interno</td>
</tr>
<tr>
<td></td>
<td>Estopa de algodón, nylon y poliéster</td>
<td>g/ /HMV</td>
<td></td>
<td>Se envían a reciclaje</td>
</tr>
<tr>
<td>S/N</td>
<td>Fibro Cemento (Poliéster - Nylon)</td>
<td>S</td>
<td>----</td>
<td>Se envía a tiradero municipal.</td>
</tr>
<tr>
<td>Número INE ó NOM aplicable*</td>
<td>Residuo Denominación oficial</td>
<td>Método de disposición recomendado</td>
<td>Disposición de acuerdo al TA Abfall</td>
<td>Disposición actual</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Fieltros (Polipropileno)</td>
<td>ᵇ</td>
<td>----</td>
<td>Se envía a tiradero municipal.</td>
</tr>
<tr>
<td></td>
<td>Ganchos de Plástico</td>
<td>/ A / ᵇ</td>
<td>----</td>
<td>Se regresan a los respectivos clientes.</td>
</tr>
<tr>
<td></td>
<td>Lonas (Poliéster)</td>
<td>/ A / ᵇ/g</td>
<td>----</td>
<td>Se envía a tiradero municipal.</td>
</tr>
<tr>
<td></td>
<td>Material de empaque corrugado</td>
<td>/ A / ᵇ/g</td>
<td>----</td>
<td>Se envían a reciclaje</td>
</tr>
<tr>
<td></td>
<td>Pedacería de medias y pantimedias</td>
<td>ᵇ</td>
<td>----</td>
<td>Se envían a relleno sanitario</td>
</tr>
<tr>
<td></td>
<td>Pelusa</td>
<td>ᵇ/g</td>
<td>----</td>
<td>Se envían a relleno sanitario</td>
</tr>
<tr>
<td></td>
<td>Polietileno</td>
<td>ᵇ/g</td>
<td>----</td>
<td>Se envían a reciclaje</td>
</tr>
<tr>
<td></td>
<td>Recortes de tela</td>
<td>ᵇ/g</td>
<td>----</td>
<td>Se envían a reciclaje</td>
</tr>
<tr>
<td></td>
<td>Residuos / retazos de tela</td>
<td>A / ᵇ</td>
<td>----</td>
<td>Se envían a relleno sanitario</td>
</tr>
<tr>
<td></td>
<td>Restos de hilo</td>
<td>A / ᵇ</td>
<td>----</td>
<td>Los envían al relleno sanitario</td>
</tr>
<tr>
<td></td>
<td>Los hilos se utilizan para fabricar estopas</td>
<td></td>
<td></td>
<td>Reuso.</td>
</tr>
<tr>
<td></td>
<td>Tarimas de madera</td>
<td>/ A / ᵇ</td>
<td>----</td>
<td>Se envían a reciclaje</td>
</tr>
<tr>
<td></td>
<td>Telas de formación (Nylon)</td>
<td>ᵇ</td>
<td>----</td>
<td>Se envía a tiradero municipal.</td>
</tr>
</tbody>
</table>

*Los residuos sin número INE pero clasificados bajo la NOM-052-ECOL-93 pueden ser peligrosos por sus características CRETIB.
S/N: sin Número INE o NOM aplicables, no se consideran residuos peligrosos.
S/I: no se tiene información
7. Fuentes de Financiamiento

La instrumentación de medidas de minimización, en algunos casos, requiere de cierta inversión, que puede ser para realizar modificaciones en la planta o para la adquisición de equipo auxiliar.

A fin de que esto no sea una limitante a continuación se presenta información proporcionada por dos instituciones de financiamiento, que cuentan con programas para la prevención de la contaminación. Para más información en el capítulo siguiente se tiene un listado con los datos para contactar estos organismos así como de las instituciones que han colaborado en la elaboración de este manual.

En cuanto a fuentes de financiamiento se presentan los programas de **FUNTEC**: Fundación Mexicana para la Innovación y Transferencia de Tecnología en la Pequeña y Mediana Empresa A. C. y **NAFIN**: de Nacional Financiera.

7.1 FUNTEC

FUNTEC cuenta con el **Fondo para Proyectos de Prevención de la Contaminación, FIPREV.** El FIPREV es un fondo establecido por FUNTEC y la Comisión para la Cooperación Ambiental en América del Norte (CCA), para financiar proyectos de prevención de la contaminación en industrias pequeñas y medianas en México.

El fondo tiene como objetivo apoyar a las pequeñas y medianas empresas (PyMEs) en la realización de inversiones y transferencia de tecnología, cuyo fin sea la prevención de la contaminación. Las ventajas económicas y ambientales de realizar este tipo de proyectos, se centran en el hecho de que prevenir la contaminación da mejores resultados en el largo plazo, y el costo-beneficio es superior comparado con las medidas de control tradicionales.

Funtec promueve proyectos de prevención de la contaminación a fin de financiar a las PyMEs en la evaluación e instrumentación de proyectos de prevención de la contaminación a fin de:

- Evitar barreras comerciales no arancelarias para los productos de exportación,

- Para apoyar la sobrevivencia y consolidación de las PyMEs,

- Eficientizar procesos,

- Cumplir con la normatividad,

- Ampliar el mercado con productos ambientalmente limpios,

- Compromiso social.

Tipo de créditos:

\(\checkmark\) Para Estudios de Evaluación Ambiental:

Investigación y diagnóstico que se realice en una pequeña o mediana industria mexicana, para identificar las medidas que se requieran para la prevención de la contaminación.

\(\checkmark\) Para Proyectos Ejecutivos:

Instrumentación de medidas de prevención de la contaminación, que demuestren ventajas económicas y ambientales, y que hayan sido identificadas en un Estudio de Evaluación Ambiental.
Financiamiento

Los apoyos se concederán en moneda nacional o en dólares (para empresas que exporten).

Se financiarán proyectos hasta por el 80% de su costo total con un máximo en moneda nacional, al equivalente de US dls. $12,000 para los estudios de evaluación ambiental y US dls. $ 30,000 para proyectos ejecutivos.

La tasa de interés será de TIIE +2 en moneda nacional y LIBOR +3 en US dls.

El plazo de pago se determinará en función de la capacidad de generación de flujo del proyecto, con un máximo de 54 meses incluido el periodo de gracia necesario para la instrumentación.

Las formas de pago se acordarán dependiendo de las características del proyecto.

7.1.1 Requisitos principales

a) Ser una industria mexicana legalmente constituida

b) Ser una Sociedad Anónima, y por excepción las pequeñas empresas podrían ser Sociedades de Responsabilidad Limitada

c) Presentar una propuesta de estudio de evaluación ambiental y/o un proyecto ejecutivo.

d) Acreditar capacidad técnico-administrativa, adecuada para la ejecución del proyecto.

e) Que las empresas tengan un flujo de efectivo suficiente para acreditar el proyecto.

7.2 Nacional Financiera -NAFIN

Dentro de los programas con que cuenta NAFIN, en materia de apoyo a la industria y en materia ambiental se encuentran:

- Operaciones de crédito de segundo piso,
- Créditos a Tasa fija,
- Garantías,
- Operaciones de crédito de primer piso,
- Programa NAFIN-PNUD (Programa de las naciones Unidas para el Desarrollo) para la Modernización Tecnológica,
- ECIP (European Community Investment Partners),
- NAEF (North America Environmental Fund).

A continuación se describen estos programas.

7.2.1 Operaciones de Crédito de segundo piso

Estas operaciones se dirigen hacia:

- Realización de estudios, asesorías técnicas y capacitación, relacionados con el proyecto de mejoramiento ambiental de la empresa,
• Adquisición o reacondicionamiento de maquinaria y equipo, para la modernización de la producción y la prevención de la contaminación,

• Construcción de plantas y distritos de control y tratamiento de aguas residuales industriales,

• Aportaciones de capital accionario que realicen personas físicas o morales, para cualquiera de los fines anteriores.

Características.

1. Los créditos se otorgan en moneda nacional o US dólares.

2. La tasa de interés en moneda nacional es de TIIE más margen del intermediario financiero; para US dlls, esta estará en función del plazo, tomando como base la Tasa Libor a 3 meses.

3. El plazo de pago será de hasta 20 años, incluyendo el periodo de gracia.

7.2.2 Operaciones de crédito de primer piso

Estas tienen como objetivo el otorgar financiamiento en forma directa a empresas que lleven a cabo proyectos de mejoramiento ambiental.

Sujetos de apoyo:

Empresas pequeñas, medianas y grandes del sector industrial.

Características:

Los créditos se otorgan en moneda nacional o US dólares

La tasa de interés en moneda nacional es de TIIE; para crédito base US dlls, esta será la Tasa Libor a 3 meses.

El plazo de pago será de hasta 20 años, incluyendo el periodo de gracia de 3 años como máximo.

El monto será hasta por el 75% del costo del proyecto.

7.2.3 Programa de Garantías

Este programa tiene como objetivo el facilitar a las empresas el acceso a recursos de largo plazo, complementando el nivel de garantías que requieren los bancos.

El riesgo que asuma NAFIN será hasta por el 50% del crédito que otorguen los bancos. Para proyectos de desarrollo tecnológico y medio ambiente, el porcentaje se determinará de acuerdo al tamaño de la empresa:

⇒ 80% para micro y pequeña empresa,
⇒ 75% para mediana,
⇒ 70% para grande.

7.2.4 Créditos a Tasa Fija

Estos créditos tienen como finalidad el brindar apoyo adicional a las empresas, mediante la realización de subastas de recursos entre los bancos comerciales, para que estos puedan canalizar créditos a tasa fija.

Las ventajas para las empresas en este caso son:

• Certidumbre en la planeación financiera
• Tasas de interés competitivas
• Plazos razonables para la maduración de los proyectos.

Características:

1) El monto puede ser:
7. Fuentes de financiamiento

a) hasta 10 millones a través de la banca comercial.

b) hasta 1 millón a través de intermediarios financieros no bancarios.

2) Plazo, ambos incluyen periodo de gracia hasta de 6 meses:

a) hasta 3 años para capital de trabajo.

b) hasta 5 años para activos fijos.

7.2.5 Programa NAFIN – PNUD para la modernización tecnológica

Este programa tiene como objetivo elevar la competitividad y eficiencia de las pequeñas y medianas empresas, mediante la canalización y financiamiento de asistencias técnicas para la incorporación de nuevas tecnologías y para la atención de problemas de contaminación ambiental.

En este caso puede financiarse la asistencia técnica que requieren las empresas para prevenir o solucionar problemas de contaminación ambiental, así como para incorporar tecnologías limpias.

Características

1. El monto puede ser hasta por el 85 % de la inversión sin exceder de 30,000 US dlls.

2. La tasa de interés es la Tasa Nafin de 22.75% al mes de abril de 1998.

7.2.6 ECIP- European Community Investment Partners

En este caso el objetivo es apoyar co inversiones de empresas medianas y pequeñas en el sector de medio ambiente, en las que participen inversionistas mexicanos y europeos.

Los tipos de apoyo otorgados pueden ser:

- Financiamiento para estudios de factibilidad, fabricación de prototipos y plantas piloto,
- Aportación de capital en la empresa conjunta,
- Financiamiento para capacitación de técnicos y cuadros gerenciales.

7.2.7 NAEF–North America Environmental Fund

Este programa tiene como fin invertir en empresas manufactureras o de servicios cuyo giro principal de negocios sea la prevención y control de la contaminación y/o la restauración del medio ambiente, entre las áreas consideradas están:

- Energía alternativa,
- Plantas de tratamiento de aguas,
- Manejo de residuos peligrosos y hospitalarios,
- Reciclamiento de productos.

Características:

1. Son sujetos de apoyo todas aquellas empresas pequeñas y medianas con actividades relacionadas con el medio ambiente.

2. El monto de la aportación de capital será hasta de 3 millones de US dlls., con una temporalidad de 5 a 7 años.

3. El porcentaje de participación del fondo será con el 25% del capital social de la empresa.
8. Contactos para más información

Comisión Ambiental Metropolitana
Secretaría del Medio Ambiente del Gobierno del Distrito Federal
Dirección General de Proyectos Ambientales
Subdirección de Residuos Peligrosos
Plaza de la Constitución No. 1, 3er Piso
Col. Centro, C.P. 06000 México D.F.
Tel.: 521-8160 y 542-2483

GTZ/TÜV ARGE MEX
Secretaría del Medio Ambiente del Gobierno del Distrito Federal
Plaza de la Constitución No. 1, 3er Piso
Col. Centro; C.P. 06000 México, D.F.
Tel.: 723-6578, 723-6579, tel/fax: 521-0868;
email: 100347.1602@compuserve.com

INE
Instituto Nacional de Ecología
Dirección General de Materiales, Residuos y Actividades Riesgosas
Av. Revolución 1425, Niveles 14 y 34
Col. Tlacopac, C.P. 01150, Del. Álvaro Obregón
Tel.: 624-3436; internet: www.ine.gov

CONCAMIN
Confederación de Cámaras Industriales
Gerencia de Ecología
Manuel María Contreras No.133, 2do Piso
Col. Cuauhtémoc, C.P. 06500 México D.F.
Tel.: 566-7527, 566-7822

CANACINTRA
Cámara Nacional de la Industria de la Transformación
Gerencia de Ecología
Av. San Antonio No. 256
Col. Ampliación Nápoles, C.P. 03849, México D.F.
Tel.: 563-3082, 615-0111, ext. 206

CMPML
Centro Mexicano para la Producción más Limpia
Av. Politécnico Nacional s/n Edif. 9 de Laboratorios Pesados
Unidad Profesional Adolfo López Mateos
Zacatenco, C.P. 07738 México, D.F.
Tel.: 729-6202
8. Contactos para más información

ANIQ
Asociación Nacional de la Industria Química, A.C.
Gerencia de Ecología
Providencia 118, Col. Del Valle
C.P. 03100, México, D.F.
Tel.: 559-7833, 230 5100
Fax: 230-5107, 230-5108

CENICA
Centro Nacional de Investigación y Capacitación Ambiental
UAM – Iztapalapa, Edificio de Ciencia y Tecnología Ambiental
Av. Michoacán y la Purísima, Col. Vicentina
Delegación Iztapalapa, C.P. 09340, México, D.F.
Tel.: 613-3821, 724-4600 ext. 2592

FUNTEC
Fundación Mexicana para la Innovación y Transferencia de Tecnología en la Pequeña y
Mediana Empresa A.C.
Manuel María Contreras 133-105
Col. Cuauhtémoc, C.P. 06597, México, D.F.
Tel. 591-0002, 591-0088, 591-0091
E-mail: funtec@funtec.org

NAFIN
Nacional Financiera
Dirección de Capacitación y Asistencia Técnica
Insurgentes Sur 1971, Torre 3-piso 11
Col. Guadalajara Inn
C.P. 01020, México, D.F.
México, D.F.
Tel. 325-6670 y 71
Fax: 325-6665
Email: info@nafin.gob.mx
9. Bibliografía

12) Abwassertechnik in der Produktion, laufend ergänzte Loseblattsammlung, WEKA Fachverlag, Augsburg

