RAIN WATER HARVESTING TECHNOLOGY IN THE PASTORALIST CONTEXT

Presented by David Kuria
During the conference on Rainwater, Watershed Management, & Food Security
18th March 2006, Mexico
Introduction

Climate change is expected to intensify in the Eastern and Southern Africa. This means an increase in many water-stressed countries with a further decrease in the flow of streams and the ability of groundwater to ‘recharge.’
Why Sand Dams?

- Sand dams principally collect percolated rainwater and rainwater run-off at depths of less than 10m.
- Sand dams provide affordable measures to increase percolation capacity in line with other RWH technologies.
Samburu Case Study

Practical Action’s experience in Samburu has shown that properly designed sand dams can have positive environmental impacts. They can help control erosion and manage silt deposition within river basins. Due to sand deposits large tree species can be conserved (e.g. Acacia, Fig Tree, and Tamarindus).
Livelihood Support

Sand dams increase moisture infiltration within the soil profile and into the ground water providing both soil and water conservation benefits.
Practical Action Eastern Africa has employed Sand dam technology as a key to improving access to water for both human and livestock consumption. This improved access also helps to reduce conflict over scarce water resources.
Whilst we are calling for urgent investment, through North-South cooperation mechanisms, into climate change adaptation, the solutions we propose are not “quick fixes”. There are no short cuts to the organisation and empowerment of communities to work with the technologies available and adapt them to their local requirements.