Brief Introduction To Three Georges Project

Wu Daoxi

Changjiang Water Resources Commission

17 March 2006
Main tasks and principal benefits of the project

Project layout and main hydraulic structures

Progress of the project construction
Brief Introduction Of the TGP

• Largest water conservancy project ever built in China
• One of the largest in the world.
 NPL: 175 m
• Total storage capacity: 39.3 b m³
• Flood control capacity: 22.15 b m³

A multi-purpose hydro-development project:
• Flood control
• Power generation
• Navigation improvement
Flood Control

• Flood storage capacity: 22.15 b m³

• Flood control capability of the Jingjiang River section: 10-year frequency flood to the 100-year frequency flood

For 1870 year flood

• Discharge at Zhicheng: at less than 80000 m³/s

• Water level at Shashi City: not in excess of 45.00 m
Sketch of integrated Yangtze flood control system
Power Generation

- Total installation of generating capacity: 18,200 MW
- Average annual output: 84.7 TW·h
- Solve the power utilization of Central China and East China
- Provide favorable condition for “west-to-east electricity transmission” scheme.
Navigation Improvement

- 660km long waterway improved
- 10,000 tons of barge fleet to the harbor of Chongqing directly
- Annual one-way navigation capacity: 10 million tons to 50 million tons
- Navigation cost: decrease 35% to 37%

- The minimum flow downstream of Yichang in the dry season: increased from 3,000 m³/s to over 5,000 m³/s
- Obviously improve the navigation condition in the dry season in the middle reaches of the Yangtze River
• Promote the development of fishery, tourism and recreational activities

• Improve the water quality of the middle and lower reaches of the river during the dry season

• Create favorable conditions for the South-to-North Water Transfer
Main tasks and principal benefits of the project

Project layout and main hydraulic structures

Progress of the project construction
● Dam site: Sandouping
● Bedrock of the dam site: granite with 100 MPa of compressive strength
● Composing of the project: dam, two power plants and navigation facilities
Dam

- Concrete gravity type
- Total length of the dam axis: 2,309.47 m
- Crest elevation: 185 m
- Maximum height: 180 m
- Spillway dam: 483 m long
- 23 bottom outlets: 7×9 m with an elevation of 90 m
- 22 Surface sluice gates: a net width of 8 m and a sill elevation at 158 m.
23 deep outlets:
Located in the middle of each monolith, sizes at 7×9m, with inlet bottom at el.90m, which is provided with 3 gates.

22 surface bays:
Arranged crossing on the transversal joints, with its weir crest at el.158m, 8m wide, provided with 2 gates operated by the gantry crane.

22 diversion bottom outlets:
Sized at $6m \times 8.5m$ with inlet bottom at el.56-57m.
• Two powerhouses, placed at the toe of the dam, one on each side
• The left one: 643.6 m long, 14 turbine generator units
• The right one: 584.2 m long, 12 turbine generator units
Shiplock

- Double—way and five—step flight locks
- Lock chamber: 280×34 × 5 m (i.e., length × width × water depth)
- Capable of passing 10, 000 tons of barge fleet
Shiplift

- One step vertical hoisting type
- Container size: 120 × 18 × 3.5 m
- Capable of carrying one 3,000 ton passenger or cargo boat each time
Outline

- Main tasks and principal benefits of the project
- Project layout and main hydraulic structures
- Progress of the project construction
Three Stages

Phased river diversion is divided into three stages:

1st stage: 5 years (1993--1997)
2nd stage: 6 years (1998--2003)
3rd stage: 6 years (2004--2009)
The First Stage

- Enclosed the sub-river on the right side of the islet
- Built the earth-and-rock fill cofferdam
- Excavated the open diversion channel
- Constructed longitudinal RCC cofferdam in the construction pit
- Finished the construction of the temporary shiplock on the left bank of the river
The Second Stage

- Built the 2nd stage transverse cofferdams both upstream and downstream
- Completed RCC longitudinal cofferdam and the 2nd stage construction pit
- Constructed the spillway, the intake dam and the power plant on the left bank
- Constructed the permanent shiplock and the shiplift on the left bank
The Third Stage

- Built the upstream third stage RCC cofferdam to cut off the open channel to impound the reservoir to 135 m in elevation
- Put the left bank power station and the permanent shiplock into operation
- Finish construction of right bank dam and power house
Memorabilia and Schedule

1993.1 — preparing for construction
1994.12 — declare the formal start
1997.11 — close-off the main river, entered the second stage
2002.11 — close-off the open channel
2003.4 — third stage cofferdam reached 140m
2003.6.10 — started to impound to 135m
2003.6.16 — shiplock put into use
2003.7 — first unit at left power station generated
At present — right dam reached 172-185m
12.2 billion RMB invested
2007 — first unit at the right power house generate
2008 — 12 units generate, fulfill TGP construction
2009 — impound to NPL 175m
Profit

- Generation: more than 100 billion KW.h until the end of January 2006

- Cargoes through shiplock: 80.99 million tons until the end of 2005

- Passengers through shiplock: 4.69 million until the end of 2005
Thank You All!