Kessem-Tendaho
Multipurpose
Water Resources Development
Ethiopia

By
Teferra Beyene
Ministry of Water Resources, Ethiopia
Background

Ethiopia:

WR Potentials
- Annual runoff: 122 Bm3
- Hydropower: 160 TWh
- Irrigable land: 3.7 mill.

Development Status
- water Supply: 42 %
- sanitation: 17 %
- Hydropower: 670 MW (2%)
- irrigation: (about 5%)
The Awash basin WR Development and Issues

The Awash

- Annual runoff: 4.9 Bm³
- Catchment : 110,000 km²
- Climate:
 - Rainfall
 - Temperature :
- Irrigation Potential: >400,000 ha.
- Frequent drought and flood
 - Food insecure
 - Vulnerable for flood
- A single reservoir
The AWASH

• Suitable for integrated development
 - Most intensively studied Basin
 - Availability of land, WR,
 - Relatively well developed infrastructure
 - Favorable climate for agriculture
 - Strategic location
The Kessem-Tendaho Project

Objectives:
• Bring about socioeconomic development & growth
• Boost sugar production

Target:
- Creating alternative livelihoods for local community
- Meet the growing local sugar demand
- Target 2.5% global market share
- Co-generate about 100MW
- Substitute up to 20% of gasoline import with fuel ethanol
- Create employment opportunities for more than 80,000 people
Project components

- Dams & Irrigation system
- Agricultural Development
 - Diversified agri.development including Livestock
 - Development of Sugar estate
- Infrastructure development
- Establishment of Sugar factories
 - Sugar production
 - Economic use of by-products
 - (Power alcohol, co-generation of electricity, organic fertilizers)
- Hydropower development
Benefits and beneficiaries

- Regulation of the WR for productive purposes (industry, community)
- Establishment of an agro-industrial development in relatively an underdeveloped part of the country (Govt., community, industry)
- Integrated sugar development with highest multiplier effects (industry, community,)
- Creation of About 80,000 jobs (Govt. community)
- Flood protection for the lower Awash (community, farms)
- Fishery development (community, industry)
- Livestock development (community, industry)
Project impact

- Improved livelihood of pastoralists (improved forage varieties, food security through provision of water)
- Increased country’s foreign currency earning
- Drought and flood mitigated
- Job opportunity created
- Improved infrastructure
- Growth in the national economy

Likely negative impacts and mitigation measures

- Sedimentation of reservoirs (Watershed magt.)
- Prevalence of malaria and other infectious diseases
 (biological, chemical and environmental control of malaria, provision of health services)
- Resettlement of 3000 households (Proper resettlement plans)
- Possibility of GW rise and salinity (GW monitoring, drainage, etc.)
Key challenges

- Respecting the completion time of the Project
- Limited technical capacity
- Unavailability of specialized contractors
- Unavailability of Specialists
- Shortage of engineers, technicians, skilled and semi skilled labor.
- Shortage of supplies (e.g. equipment, spare parts)
Stakeholders involvement

Types of stakeholders
- Government (federal, regional, local)
- Public Enterprises
- Community
- CSO (women’s associations)

Means of involvement

Stakeholders are involved in project planning, implementation, decision making processes through:

- Consultations & review meetings and discussions
- Needs Assessment exercises
- Steering Committees
Sustainability

• Commitment to assure sustainability
 ➢ Process involved stakeholders’ needs à project acceptability
 ➢ Political commitment
 ➢ Special arrangements to ensure financial sustainability
 ➢ Intensive capacity building programme included in the Project
 ➢ Environmental Management Unit established
Lessons Learned

- Political commitment key for WR development
- Public sector should lead in irrigation development
- Consultation and involvement of Stakeholders: ensures sustainability
thank you