SEGUNDO TALLER
DISEÑO PRELIMINAR DE ALTERNATIVAS
PARA PLANTA GRANDE

por

Fabián Yáñez, Ph.D.
Asesor Tratamiento de Aguas Residuales
Centro Americano de Ingeniería Sanitaria
y Medio Ambiente (CEPIS)
A. **INTRODUCCION**

En esta parte del curso se efectuarán cálculos de dimensionamiento de alternativas de tratamiento para una planta de tratamiento de aguas residuales de una ciudad con una población equivalente de 1,400,000 habitantes para un período de diseño final de 18 años. En el cuadro 1 se presentan las bases de diseño adoptadas. En el cuadro 2 se indican los componentes y características más relevantes de las alternativas a estudiar.

Se han establecido dos grupos de alternativas. Las alternativas "A" corresponden a tecnología convencional y los datos de dimensionamiento están suministrados. El dimensionamiento de procesos será efectuado para las alternativas de tecnología modificada B1, B2 y B3. Los resultados de estos cálculos están tabulados en el cuadro 3.

Los datos desarrollados para las alternativas A2, B1 y B3 serán utilizados en el cálculo de costos a ser efectuado en el tercer taller.

Cuadro 1

SUMARIO DE BASES DE DISEÑO

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Población equivalente, habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350,000</td>
</tr>
<tr>
<td>2. Caudal</td>
<td></td>
</tr>
<tr>
<td>a. Promedio anual, l/s</td>
<td>619</td>
</tr>
<tr>
<td>b. Máximo horario seco l/s</td>
<td>2,223</td>
</tr>
<tr>
<td>c. Máximo horario húmedo l/s</td>
<td>1,500</td>
</tr>
<tr>
<td>3. Cargas promedio</td>
<td></td>
</tr>
<tr>
<td>a. DBO kg/d</td>
<td>18,750</td>
</tr>
<tr>
<td>b. Sólidos en suspensión kg/d</td>
<td>18,750</td>
</tr>
</tbody>
</table>

Elevación de la ciudad = 860 m
Temperatura promedio anual compensada = 16.5°C
" " máxima = 22.8°C
" " mínima = 12.4°C
" " máxima mensual (enero) = 27.5°C
" " mínima mensual (julio) = 8°C
Cuadro 2
Procesos y Características más Relevantes de Cada Alternativa

<table>
<thead>
<tr>
<th>Procesos y características</th>
<th>Alternativas</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tecnología</td>
<td>A-1</td>
<td>A-2</td>
<td>B-1</td>
<td>B-2</td>
</tr>
<tr>
<td></td>
<td>Convencional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modificada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Tratamiento preliminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Cribas gruesas</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>b. Desarenadores aerados</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c. Desarenadores cuadrados</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2. Tratamiento primario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Tanques rectangulares</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b. Tanques circulares</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Tratamiento secundario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Tanques de aeración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Convencional</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) Aeración extendida</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(3) Aeración semientendida</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>b. Sistema de aeración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Aire comprimido</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) Aeración mecánica</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>c. Sedimentación secundaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Tanques rectangulares</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) Tanques circulares</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d. Cloración en:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Tanques</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) Canal de descarga</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4. Tratamiento y disposición de lodos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Preespesamiento</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b. Digestión anaeróbica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Una etapa</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) Dos etapas</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c. Post-espesamiento</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d. Lechos de secado</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* Existe la posibilidad de disponer del lodo de estas alternativas en lagunas existentes sin usar lechos de secado.
Cuadro 3

Resumen de Parámetros Utilizados y Dimensiones de Procesos en las Varias Alternativas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-1</td>
</tr>
<tr>
<td>A. Tratamiento preliminar</td>
<td></td>
</tr>
<tr>
<td>1. Caudal adoptado, m³/s</td>
<td>6.0</td>
</tr>
<tr>
<td>2. Desarenadores</td>
<td></td>
</tr>
<tr>
<td>a) Carga superficial, m³/m²/hora</td>
<td>90.0</td>
</tr>
<tr>
<td>b) Área, m²</td>
<td>240</td>
</tr>
<tr>
<td>c) Número de unidades</td>
<td>8</td>
</tr>
<tr>
<td>d) Área c/u, m²</td>
<td>30</td>
</tr>
<tr>
<td>B. Tratamiento primario</td>
<td></td>
</tr>
<tr>
<td>1. Caudal adoptado, m³/s</td>
<td>6.0</td>
</tr>
<tr>
<td>2. Carga superficial, m³/m²/hora</td>
<td></td>
</tr>
<tr>
<td>3. Área total, m²</td>
<td>5,280</td>
</tr>
<tr>
<td>4. Número de unidades</td>
<td>16</td>
</tr>
<tr>
<td>5. Área c/u, m²</td>
<td>330</td>
</tr>
<tr>
<td>6. Profundidad efectiva c/u, m</td>
<td></td>
</tr>
<tr>
<td>7. Volumen neto, m³</td>
<td>18,850</td>
</tr>
<tr>
<td>8. Dimensiones c/u, m</td>
<td></td>
</tr>
<tr>
<td>a) Largo</td>
<td>55</td>
</tr>
<tr>
<td>b) Ancho</td>
<td>6</td>
</tr>
<tr>
<td>c) Diámetro</td>
<td>-</td>
</tr>
<tr>
<td>9. Carga orgánica, kg/DBO/día</td>
<td>75,000</td>
</tr>
<tr>
<td>10. Remoción DBO, %</td>
<td>30</td>
</tr>
<tr>
<td>11. Carga orgánica a secundario, kg DBO/día</td>
<td>52,500</td>
</tr>
<tr>
<td>12. Carga de sólidos, kg SS/día</td>
<td>75,000</td>
</tr>
<tr>
<td>13. Remoción de sólidos, kg/SS/día</td>
<td>52,500</td>
</tr>
<tr>
<td>14. Carga de sólidos a secundario, kg SS/día</td>
<td>22,500</td>
</tr>
<tr>
<td>Descripción</td>
<td>Alternativas</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>A-1</td>
</tr>
<tr>
<td>15. Tiempo de retención</td>
<td>2.12</td>
</tr>
<tr>
<td>(caudal promedio) h</td>
<td>0.87</td>
</tr>
<tr>
<td>16. Tiempo de retención</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>C. Tratamiento secundario</td>
<td></td>
</tr>
<tr>
<td>Aeradores -</td>
<td></td>
</tr>
<tr>
<td>1. Caudal de diseño adoptado, m³/s</td>
<td>2.474</td>
</tr>
<tr>
<td>2. Carga orgánica al proceso, kg DBO/día</td>
<td>52,500</td>
</tr>
<tr>
<td>3. Carga orgánica por volumen, kg DBO/m³/día</td>
<td>0.656</td>
</tr>
<tr>
<td>4. Volumen total aeradores, m³</td>
<td>80,000</td>
</tr>
<tr>
<td>5. Número de unidades</td>
<td>32</td>
</tr>
<tr>
<td>6. Volumen c/u, m³</td>
<td>2,500</td>
</tr>
<tr>
<td>7. Período de retención con caudal-Prom. anual,horas</td>
<td>9</td>
</tr>
<tr>
<td>8. Aire comprimido</td>
<td></td>
</tr>
<tr>
<td>a) Requisitos</td>
<td></td>
</tr>
<tr>
<td>CF/lb DBO removidas</td>
<td>900</td>
</tr>
<tr>
<td>b) CFM (promedio anual)</td>
<td>65,000</td>
</tr>
<tr>
<td>c) CFM (máximo diario)</td>
<td>92,000</td>
</tr>
<tr>
<td>d) CFM (máximo horario)</td>
<td>130,000</td>
</tr>
<tr>
<td>e) Requisitos de energía</td>
<td></td>
</tr>
<tr>
<td>1) CFM/HP</td>
<td>23</td>
</tr>
<tr>
<td>2) Capacidad instalada, HP</td>
<td>4,000</td>
</tr>
<tr>
<td>3) Chequeo, KWH/kg DBO rem.</td>
<td>1.5</td>
</tr>
<tr>
<td>9. Aeración mecánica</td>
<td></td>
</tr>
<tr>
<td>a) C.O./carga, kg O₂/kg DBO</td>
<td>2.0</td>
</tr>
<tr>
<td>b) Requisitos de oxígeno</td>
<td></td>
</tr>
<tr>
<td>kg O₂/día *</td>
<td>105,000</td>
</tr>
<tr>
<td>c) Aeradores adoptados</td>
<td></td>
</tr>
<tr>
<td>1) Capacidad kg O₂/kwh (campo)</td>
<td>2</td>
</tr>
<tr>
<td>2) Número</td>
<td>24</td>
</tr>
<tr>
<td>3) HP c/u</td>
<td>150</td>
</tr>
<tr>
<td>4) Capacidad instalada total, HP</td>
<td>3,600</td>
</tr>
<tr>
<td>idem, kw</td>
<td>2,680</td>
</tr>
<tr>
<td>5) Consumo energía, % cap.inst.(1993)</td>
<td>100</td>
</tr>
<tr>
<td>6) Consumo oxígeno, kg O₂/kg DBO</td>
<td></td>
</tr>
</tbody>
</table>

* Cálculo para condiciones estándar, 20°C y 1 atmósfera. Ver cálculo detallado para denitrificación y condiciones de campo.
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-1</td>
</tr>
<tr>
<td>10. Parámetros operacionales aerador</td>
<td></td>
</tr>
<tr>
<td>a) SSLM, mg/l</td>
<td>2,700</td>
</tr>
<tr>
<td>b) Retorno de lodos:</td>
<td></td>
</tr>
<tr>
<td>% caudal prom.</td>
<td>50</td>
</tr>
<tr>
<td>% máx.hor. seco</td>
<td>-</td>
</tr>
<tr>
<td>m³/s (máx.)</td>
<td>-</td>
</tr>
<tr>
<td>m³/s (min.)</td>
<td>-</td>
</tr>
<tr>
<td>c) Kg DBO/ton SSLM/h</td>
<td>23.93</td>
</tr>
<tr>
<td>d) Kg DBO/kg.SSLM(G/M)</td>
<td>0.24</td>
</tr>
<tr>
<td>e) Edad del lodo:</td>
<td></td>
</tr>
<tr>
<td>Gould, días</td>
<td>4.17</td>
</tr>
<tr>
<td>Eckenfelder, días</td>
<td>6.0</td>
</tr>
<tr>
<td>f) Producción de lodo de exceso, kg SS/m³/día</td>
<td>0.45</td>
</tr>
<tr>
<td>g) Índice de volumen de lodos esperado en el aerador</td>
<td>100</td>
</tr>
<tr>
<td>h) Chequeo eficiencia proc. secundario según C., % rem. DBO</td>
<td>90 - 92</td>
</tr>
<tr>
<td>11. Sedimentador secundario</td>
<td></td>
</tr>
<tr>
<td>a) Caudal adoptado, m³/s</td>
<td>4.894</td>
</tr>
<tr>
<td>b) Carga superficial, m³/m²/hora</td>
<td>1.631</td>
</tr>
<tr>
<td>c) Área total, m²</td>
<td>10,800</td>
</tr>
<tr>
<td>d) No. de unidades</td>
<td>40</td>
</tr>
<tr>
<td>e) Área c/u, m²</td>
<td>255</td>
</tr>
<tr>
<td>f) Profundidad efectiva, m</td>
<td>3.30</td>
</tr>
<tr>
<td>g) Volumen neto, c/u, m³</td>
<td>841.5</td>
</tr>
<tr>
<td>h) Período de retención, h</td>
<td>1.91</td>
</tr>
<tr>
<td>i) Caudal promedio, m³/s</td>
<td>2.474</td>
</tr>
<tr>
<td>j) Caudal recirc., % prom.</td>
<td>50</td>
</tr>
<tr>
<td>k) Caudal total al sedimentador, m³/s</td>
<td>3.711</td>
</tr>
<tr>
<td>l) Carga superficial promedio, m²/m²/h</td>
<td>1.237</td>
</tr>
<tr>
<td>m) Carga de sólidos promedio, Kg SS/m²/día</td>
<td>80.1</td>
</tr>
<tr>
<td>Descripción</td>
<td>Alternativas</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>A-1</td>
</tr>
<tr>
<td>D. Tratamiento y disposición de sólidos</td>
<td></td>
</tr>
<tr>
<td>1. Sólidos removidos</td>
<td></td>
</tr>
<tr>
<td>a) Del proceso primario</td>
<td>52,500</td>
</tr>
<tr>
<td>kg SS/día</td>
<td></td>
</tr>
<tr>
<td>b) Exceso del secundario</td>
<td>36,000</td>
</tr>
<tr>
<td>kg SS/día</td>
<td></td>
</tr>
<tr>
<td>c) Total sólidos</td>
<td>88,500</td>
</tr>
<tr>
<td>kg SS/día</td>
<td></td>
</tr>
<tr>
<td>2. Preespasador</td>
<td></td>
</tr>
<tr>
<td>a) Carga de sólidos</td>
<td></td>
</tr>
<tr>
<td>kg SS/día/m²</td>
<td>-</td>
</tr>
<tr>
<td>b) Área total, m²</td>
<td>-</td>
</tr>
<tr>
<td>c) No. de unidades</td>
<td>-</td>
</tr>
<tr>
<td>d) Área c/u</td>
<td>-</td>
</tr>
<tr>
<td>e) Profundidad, m</td>
<td>-</td>
</tr>
<tr>
<td>f) Contenido de sólidos inferior, %</td>
<td>-</td>
</tr>
<tr>
<td>3. Digestores</td>
<td></td>
</tr>
<tr>
<td>a) Kg SSV/día</td>
<td>66,380</td>
</tr>
<tr>
<td>b) Carga orgánica</td>
<td>1,208</td>
</tr>
<tr>
<td>(kg SSV/m³/día)</td>
<td></td>
</tr>
<tr>
<td>c) Vol. digestores, m³</td>
<td>54,960</td>
</tr>
<tr>
<td>d) No. total digestores</td>
<td>12</td>
</tr>
<tr>
<td>e) Vol., c/u, m³</td>
<td>4,580</td>
</tr>
<tr>
<td>f) Reducción de sólidos volátiles, %</td>
<td>50</td>
</tr>
<tr>
<td>g) Sólidos en lodo</td>
<td>55,300</td>
</tr>
<tr>
<td>h) Periodo de retención promedio, días</td>
<td>24</td>
</tr>
<tr>
<td>4. Lechos de secado</td>
<td></td>
</tr>
<tr>
<td>a) Población equiv., hab.</td>
<td>1'390,000</td>
</tr>
<tr>
<td>b) Carga, PE/m²</td>
<td>3.5</td>
</tr>
<tr>
<td>c) Lechos área total m²</td>
<td>400,000</td>
</tr>
<tr>
<td>d) Carga de sólidos promedio, kg SS/día</td>
<td>55,300</td>
</tr>
<tr>
<td>fdem, kg SS/m²/día</td>
<td>0.138</td>
</tr>
<tr>
<td>Descripción</td>
<td>Alternativas</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>E. Remoción de DBO promedio</td>
<td></td>
</tr>
<tr>
<td>1. Remoción global, %</td>
<td>93</td>
</tr>
<tr>
<td>2. Remoción en los procesos:</td>
<td></td>
</tr>
<tr>
<td>kg DBO/día</td>
<td>22,500</td>
</tr>
<tr>
<td>a) En primario</td>
<td>22,500</td>
</tr>
<tr>
<td>b) En secundario</td>
<td>47,250</td>
</tr>
<tr>
<td>c) Total</td>
<td>69,750</td>
</tr>
<tr>
<td>3. Remoción total de DBO (1975-1978), ton DBO</td>
<td></td>
</tr>
<tr>
<td>a) En primario</td>
<td>9,477</td>
</tr>
<tr>
<td>b) En secundario</td>
<td>19,900</td>
</tr>
<tr>
<td>c) Total</td>
<td>29,377</td>
</tr>
</tbody>
</table>
TERCER TALLER EN GRUPOS

ESTIMACION DE COSTOS DE CONSTRUCCION Y EXPLOTACION PARA ALTERNATIVAS DE TRATAMIENTO DE PLANTA GRANDE

Fabián Yánez, Ph.D.
Asesor en Tratamiento de Aguas Residuales
Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (CEPIS)
Lima - Perú
I. INTRODUCCIÓN

A. Generalidades

El costo de obras de disposición y tratamiento de aguas residuales (interceptores, estaciones de bombeo y plantas de tratamiento) es usualmente significativo en comparación con el costo de otras obras que pueden presentarse en un programa de control de polución. En el campo del tratamiento de aguas residuales, el factor "costo" es una herramienta fundamental en la toma de decisiones. La evaluación de tecnologías prevalentes y la introducción de nuevas tecnologías son siempre efectuadas en términos económicos y dado que estos procesos de investigación ocurrren continuamente, se desprende que los costos sufren cambios dinámicos.

Existen diversos tipos de costos asociados con estas obras y varias posibilidades de aplicación de los mismos a nivel de "ingeniería económica", "economía regional" y "diseño", lo que se analiza en detalle más adelante.

En los países en desarrollo existe muy poca información sobre este aspecto que pueda ser de utilidad para el ingeniero o el administrador en la toma de decisiones. Los pocos datos de costos pagados por obras construidas no pueden ser generalmente utilizados para evaluación de costos de otras obras, por varias razones.

La primera es el factor "tiempo transcurrido", el cual hace que un costo se vuelva rápidamente obsoleto debido a las tendencias inflacionarias que se están experimentando en el mundo. Durante el último año, el incremento de costos de construcción en un gran número de países de América estuvo alrededor del 20%, lo cual significa que, de continuar esta tendencia, un costo actual se duplicaría en cinco años. A menos que exista una herramienta para actualizar los costos, estos no estarían utilizados correctamente. Esta actualización puede ser efectuada mediante el empleo de un índice de costos. Algunos países de América Latina editan índices de costos de construcción civil, mas estos no son específicos para plantas de tratamiento de aguas residuales debido principalmente a que no fueron desarrollados con el componente de costo de equipo.

La segunda razón es el factor "lugar". Los costos obtenidos en un lugar no son generalmente aplicables a otro, aun dentro de un mismo país. Esto se debe principalmente a que los mismos elementos de costo (o cantidades de obra como: concreto, hierro, mampostería, excavación, etc.) están afectados por diferentes precios unitarios (mano de obra, costo de materiales, etc.) y además por la influencia (favorable o desfavorable) de otros costos como el transporte.
La tercera razón es la naturaleza de la información. Por un lado, no existen suficientes datos estadísticos sobre obras con los mismos componentes pero de diferente tamaño, necesarios para determinar una tendencia (ej. curva de economía de escala), y luego los datos que existen en su mayor parte corresponden a soluciones llevadas a cabo con tecnologías propias de países industrializados, por lo que no son soluciones económicas.

B. Necesidad de un sistema de análisis

El costo de obras de control de polución puede ser estimado mediante el "análisis de costo". Este procedimiento permite al ingeniero introducir nuevas tecnologías y adaptarlas a la localidad, a nivel de anteproyecto o estudio de factibilidad cuando se estudia el impacto económico de usar varias soluciones alternativas.

Este procedimiento, si bien es bastante conocido en América Latina para otro tipo de obras, no está bien difundido para evaluación de costos de procesos y plantas de tratamiento de aguas residuales, principalmente debido a lo complicado que puede resultar el análisis por el número de alternativas posibles a utilizarse como solución, y luego porque este campo está introduciéndose en los países en desarrollo.

Un "sistema o metodología de análisis de costo" que pueda ser aplicado a una localidad y cuente con posibilidades para desarrollar datos que puedan ser utilizados dentro del factor tiempo, es de gran importancia y utilidad en este campo. Idealmente, este sistema debe estar estructurado en tal forma que permita su uso utilizando como "input" costos unitarios de una localidad dada y, además, que se puedan efectuar cambios resultantes de tecnologías más económicas. En el capítulo siguiente se sugiere el contenido de esta metodología.

II. METODOLOGÍA PARA ESTIMACION DE COSTOS

A. Tipos de costo y su aplicación

Un ordenamiento sistemático en la evaluación de costos de plantas de tratamiento puede generar información sobre los siguientes tipos de costos:

1. Costos de procesos de tratamiento

Son costos iniciales o de construcción que comprenden obra civil y equipo de los diferentes procesos componentes de una planta de tratamiento. El equipo asociado con el proceso pero fuera del mismo puede estar incluido si es circundante al mismo. En caso contrario, todos los ítems de obra civil y equipos son agrupados bajo "obras generales".

Las aplicaciones de estos costos serían las siguientes:

a) Estudios de factibilidad técnico-económica en el tratamiento de aguas residuales
 - Selección de secuencias de procesos de tratamiento más recomendables
- Provisión de información necesaria para el prorratae de costos en la determinación de tarifas por descarga y tratamiento de aguas residuales domésticas e industriales
b) Investigación para la introducción de nuevas tecnologías
 - Necesidades de fabricación local de equipo
 - Modificación de tendencias de construcción establecidas

2. **Costos globales de plantas de tratamiento**
 Incluyen costos de construcción, operación, mantenimiento y costos anuales de una secuencia de procesos adoptada para una planta de tratamiento de aguas residuales. Las aplicaciones de estos costos son:
 * a) Estudios de factibilidad técnico-económica
 * b) Determinación de períodos económicos de proyecto
 * c) Desarrollo de índices de costo
d) Provisión de datos para modelos económicos en desarrollo de recursos hídricos y control de polución
e) Estudios sobre tarifas para usuarios de sistemas de evacuación y tratamiento de aguas residuales

B. **Revisión de la tecnología existente**

Este constituye uno de los pasos más importantes dentro de la metodología que se propone. La estimación de costos debe ser efectuada para soluciones simples y económicas que hayan sido desarrolladas con una adaptación a tecnologías de construcción y fabricación de equipos propios de la localidad. Dado que la información a desarrollarse se constituirá en un nivel de referencia para usuarios de un país, se debe tratar de que los costos sean los más bajos posibles.

Uno de los criterios más importantes a desarrollar es el llamado "criterio para la concepción de proyecto". Este facilita la determinación del número de unidades de un proceso dado y de un requisito total de capacidad, volumen o área. Dicho en otras palabras, si una planta requiere un volumen total de tanque de sedimentación de 20,000 m³, ¿cuál sería la solución más ventajosa: 20 tanques de 1000 m³ cada uno o cuatro tanques de 5000 m³ cada uno?

El desarrollo de este criterio es similar para casi todos los procesos y puede ser encontrado analizando curvas de economía de escala de costos de obra civil (los ítems de concreto y hierro usualmente son suficientes) y equipos. Por lo general, el simple raciocinio es suficiente cuando hay familiaridad con los datos de costo. Por ejemplo, para el caso propuesto se tiene la suma de dos datos provenientes de curvas de economía de escala que de antemano nos dan la solución menos costosa, que sería un tanque de 20,000 m³ (lo cual no sería práctico). Los costos para tanques circulares son:
De los datos anteriores se desprende la antieconomía que representaría escoger la solución de 20 tanques. El número más conveniente de unidades es determinado por consideraciones de orden práctico que usualmente están relacionadas con:

- Limitaciones de tamaño de equipo
- Número de unidades compatible con una operación y mantenimiento adecuados
- Número de unidades compatible con la implementación de la obra en etapas, que a su vez está relacionado con la disponibilidad de dinero; etc.

Otro aspecto de revisión de la tecnología incluye la selección óptima de formas de tanques. Tradicionalmente se ha venido usando tanques sedimentadores rectangulares, principalmente debido al ahorro de concreto en paredes adyacentes y área necesaria. La práctica moderna está desarrollándose en favor del tanque circular debido a la economía que se puede alcanzar con diseños de sedimentadores de profundidad reducida (1.5-2.0 m) en la periferia y uso de mecanismos de remoción de sedimentos más baratos que en tanques rectangulares. Esto es particularmente cierto para sedimentadores secundarios del proceso de sedimentos activados por aeración extendida, en donde se requiere un 100% de recirculación de sedimentos y los requisitos de área pueden ser reducidos significativamente utilizando diseños con tolvas centrales de remoción de sedimentos, de modo que el flujo de recirculación es retirado en la vecindad del afluentes, lo cual no es posible en tanques rectangulares.

Otro aspecto en cuanto a obra civil es el uso de cámaras de división de caudal en lugar de canales. Usualmente esto permite la sustitución de tuberías de hierro entre procesos por tuberías de concreto simple.

En cuanto a equipo de bombeo, la bomba de tornillo (Arquimedes) está siendo utilizada con ventaja debido a que no necesita tratamiento previo, ausencia de pozo húmedo y menor costo. Los siguientes son los límites de aplicación de la bomba tornillo abierta:

* Calculados con costos unitarios de Cali, Colombia, setiembre 1974.
INTERVALOS DE APLICACIÓN DE BOMBAS TIPO TORNILLO ABIERTAS

<table>
<thead>
<tr>
<th>Diámetro del tornillo, pulg.</th>
<th>RPM máx.</th>
<th>1 helicóide</th>
<th>2 helicoides</th>
<th>3 helicoides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ℓ/s</td>
<td>m</td>
<td>ℓ/s</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>10</td>
<td>2.36</td>
<td>12</td>
</tr>
<tr>
<td>80</td>
<td>31</td>
<td>762</td>
<td>7.20</td>
<td>952</td>
</tr>
</tbody>
</table>

En los últimos años se ha podido incrementar el intervalo de aplicación de la bomba tornillo, utilizando un tubo-forro para el helicóide. En el siguiente cuadro se presentan las capacidades posibles con alturas de bombeo de hasta 16 m.

CAPACIDAD EN ℓ/s DE BOMBAS TORNILLO CERRADAS

<table>
<thead>
<tr>
<th>Diámetro cm</th>
<th>RPM 100</th>
<th>RPM 80</th>
<th>RPM 60</th>
<th>RPM 50</th>
<th>RPM 40</th>
<th>RPM 30</th>
<th>RPM 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La práctica moderna de selección de equipo de aeración está favoreciendo a los aeradores mecánicos. Esto se aplica más aún a países en desarrollo, en donde la fabricación de motores es más fácilmente introducible que la fabricación de compresores. Una de las ventajas de la aeración mecánica es el posible ahorro de energía con el uso de aeradores de gran diámetro y rotación reducida, los cuales son eficientes mezcladores. Con esta alternativa es posible utilizar solo una fracción de la capacidad de energía instalada para mantener la mezcla necesaria y programar el funcionamiento de los aeradores, poniendo fuera de operación uno o varios de ellos en periodos de demanda reducida de oxígeno. Esto se puede lograr con un sensor de oxígeno (célula polarográfica) en el tanque de aeración y relacionando el funcionamiento de los aeradores para niveles de oxígeno menores que un límite predeterminado.

C. Selección de alternativas

1. Intervalo de aplicación

Se refiere al tamaño de plantas en términos de capacidad, usualmente se emplea población equivalente. Es recomendable tener por lo menos cuatro puntos para un buen desarrollo de las curvas de costo desde el punto de vista estadístico. Un buen intervalo para plantas secundarias en de 50,000 a 2'000,000 de habitantes con cuatro puntos intermedios para 100,000, 200,000, 500,000 y 1'000,000 de habitantes. Lo indicado implicaría tener por lo menos seis módulos de procesos.

2. Procesos factibles de aplicación

Los siguientes procesos son factibles de ser utilizados para el intervalo considerado en un país en desarrollo:

a) Para tratamiento del líquido:

(1) Estaciones de bombeo
(2) Tratamiento preliminar que usualmente incluye: cribas gruesas, desmenezadores, desarenador, medidor Parshall y by-pass
(3) Tanques de sedimentación primarios
(4) Filtros biológicos, incluida sedimentación secundaria
(5) Tanques de aeración convencional y aeración extendida. Usualmente se incluye el tanque de sedimentación secundaria, estación de retorno de lodos y equipo
(6) Cloración

b) Para tratamiento y disposición de sólidos

(1) Espesamiento
(2) Digestión anaeróbica
(3) Filtros al vacío
(4) Lechos de secado

c) Obras generales

Incluyen tuberías que interconectan procesos, cámaras de distribución de caudal, edificios, arreglos generales, equipo misceláneo, etc., que resultan del ensamblaje de una alternativa.
3. **Secuencias de procesos recomendables**

Las siguientes son secuencias utilizables dentro del marco de aplicación en una planta de tratamiento secundario de un país en desarrollo:

a) **Filtros biológicos (incluido tratamiento primario)**

(1) Con espesamiento, digestión anaeróbica y lechos de secado
(2) Con espesamiento y filtros al vacío

b) **Lodos activados convencionales (incluido tratamiento primario)**

(1) Con espesamiento, digestión anaeróbica y lechos de secado
(2) Con espesamiento y filtros al vacío

c) **Aeración extendida (sin tratamiento primario)**

Con espesamiento y lechos de secado

D. Dimensionamiento hipotético

Los procesos de las plantas de tratamiento pueden ser dimensionados para los diversos tamaños de población seleccionados, utilizando parámetros significativos.

Las bases de diseño seleccionadas (caudal, flujo, concentraciones) deben representar condiciones promedio y ser utilizadas uniformemente en el dimensionamiento de todas las alternativas, puesto que sirven para proveer criterio en la modulación de unidades de procesos. Estos últimos son dimensionados generalmente utilizando parámetros y sin necesidad de recurrir a modelos matemáticos elaborados, puesto que a este nivel sólo se trata de encontrar requisitos globales de los procesos y los datos de costo serán representados en forma tal que el usuario tenga la responsabilidad del diseño.

Los siguientes parámetros determinantes se recomiendan para establecer los requisitos:

<table>
<thead>
<tr>
<th>Proceso</th>
<th>Determinante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cribas y desmenuzadores</td>
<td>Caudal</td>
</tr>
<tr>
<td>Estaciones de bombeo</td>
<td>Caudal instantáneo (peak)</td>
</tr>
<tr>
<td>Desarenadores</td>
<td>Area</td>
</tr>
<tr>
<td>Sedimentadores</td>
<td>Area</td>
</tr>
<tr>
<td>Filtros biológicos</td>
<td>Volumen</td>
</tr>
<tr>
<td>Tanques de aeración</td>
<td>Volumen</td>
</tr>
<tr>
<td>Espesamiento</td>
<td>Area</td>
</tr>
<tr>
<td>Digestión anaeróbica</td>
<td>Volumen</td>
</tr>
<tr>
<td>Filtros al vacío</td>
<td>Area</td>
</tr>
<tr>
<td>Lechos de secado</td>
<td>Area</td>
</tr>
</tbody>
</table>

La selección de equipo forma parte del dimensionamiento, particularmente el equipo de bombeo de lodos. Este es dimensionado utilizando criterios de intermitencia de funcionamiento, caudales máximos a bombearse en situaciones de emergencia y número de unidades de repuesto (stand-by). La especificación de este equipo es efectuada en términos de:
Tipo de bomba: Pistón, centrífuga o de tornillo
Caudal nominal: m³/h
Altura de bombeo: m
Consumo de energía instalada: KW

Este último ítem, conjuntamente con la intermitencia seleccionada, sirve de criterio para el cálculo de energía consumida y su costo.

La modulación de unidades de procesos forma parte del dimensionamiento. Para ello se deben tener en cuenta los criterios sobre revisión de la tecnología previamente indicados. Una vez completado este paso, se procede a trazar un plano general de la planta que incluya el arreglo de unidades y ubicación de las obras generales, como edificios, obras de distribución de caudal e interconexión entre procesos, etc. Concluido este proceso de diseño, se puede pasar a la evaluación de los costos.

E. Estimación del costo de construcción

1. Cálculo de cantidades de la obra civil

Este es un procedimiento establecido en cada país. Para cada proceso se deben calcular las cantidades de obra civil requeridas para obtener un grado de exactitud deseado. Los siguientes ítems pueden ser considerados para el desarrollo de costos con un grado de exactitud entre -10 y +20%.

a) Excavación y relleno en varios materiales
b) Concreto de varios tipos
c) Hierro para armaduras de concreto
d) Encofrados para concreto
e) Mampostería de varios tipos
f) Materiales para procesos (arena, grava, etc.)

Los costos de equipo deben ser evaluados mediante cotización en la forma más aproximada posible, para lo cual se requiere una relación detallada del equipo y sus características.

Las cantidades de obra civil para obras generales incluyen ítems indicados arriba para cámaras de división de caudal, canales de descarga, muros y diques de protección.

Las siguientes obras civiles generales son también evaluadas:

a) Obras de conexión con interceptor
b) Agua potable de la planta
c) Tuberías de concreto para interconexión entre procesos
d) Arreglo general y caminos
e) Cercas
f) Materiales prefabricados: losetas, pozos de revisión
g) Plomería de edificios
h) Obra civil de edificios
i) Conductos eléctricos para edificios
Los siguientes equipos generales deben ser considerados:

a) Paneles de control de motores
b) Instalaciones para automatización y controles
c) Bombas centrífugas para lavado y drenaje
d) Subestación eléctrica, transformador y generador auxiliar
e) Equipo de calefacción y ventilación para edificios
f) Camiones para transporte final de sólidos
g) Equipo de oficina y laboratorio
h) Herramientas de taller (shop)
i) Iluminación de plantas y edificios

2. Costos de obra civil y equipos

Estos costos se encuentran multiplicando los costos unitarios para cantidades de obra civil y equipos, según el listado indicado anteriormente. Una tabulación conveniente de ítems de costo para cada proceso y obras generales permite el desarrollo de curvas de costo para cada componente de la planta considerada. Un ejemplo de este procedimiento se incluye en la sección III de este trabajo. El costo global de construcción es usualmente dividido en obra civil y equipos, lo cual permite el cálculo de costos de mantenimiento de los mismos. Los costos de terreno por lo general no se incluyen, para evitar incertidumbres y hacer uso del grado de exactitud del análisis desarrollado. Por convención los costos de terreno están incluidos en otro tipo de análisis a nivel de proyecto, casi siempre en un informe de costo, cuyo grado de precisión es mayor.

3. Costos indirectos

Son los que cubren imprevistos, honorarios de ingeniería de diseño, supervisión de construcción, seguros, gastos legales, etc. Cada país cuenta con procedimientos y reglamentaciones propios en este aspecto para cada tamaño de obra.

4. Ensamble final y desarrollo de curvas

Para el desarrollo de curvas de procesos individuales y obras generales no se incluyen los costos indirectos. Las curvas de costo de economía de escala son expresadas en términos de los parámetros determinantes indicados anteriormente. Por ejemplo, para un tanque de aeración la curva tendría las siguientes coordenadas:

\[
\text{costo por m}^3 \quad \text{vs.} \quad \text{volumen en m}^3
\]

El desarrollo de curvas de costos globales de construcción de plantas de tratamiento se efectúa con los costos totales de construcción (incluyendo costos indirectos). Dos formas usuales de presentación de curvas de economía de escala son:

\[
\text{costo por habitante equivalente} \quad \text{vs.} \quad \text{habitantes equivalentes}
\]
\[
\text{costo por caudal} \quad \text{vs.} \quad \text{caudal}
\]

La presentación de estos datos se efectúa generalmente en papel log-log (un ejemplo se presenta en la sección III).
F. **Estimación de costos de operación y mantenimiento**

Estos son costos anuales únicamente desarrollables para arreglos completos de plantas de tratamiento. Dentro de la metodología propuesta corresponderían al primer año de funcionamiento de la planta. Los siguientes serían los items componentes en el análisis:

1. **Salarios y jornales del personal**

 Los requisitos de personal deben ajustarse a las condiciones locales y, sobre todo, a la posibilidad de utilizar personal de mantenimiento por contrato o compartido entre varias plantas dentro de una región. Igualmente posibilidades deben investigarse para el uso de laboratorios móviles o regionales. Los criterios sobre requisitos de personal para las diversas plantas deben indicarse junto con la descripción de las funciones de cada tipo de funcionario o trabajador. Los costos de salarios anuales son determinados incluyendo todos los beneficios y prestaciones sociales.

 Este análisis debe ser efectuado en forma separada para las estaciones de bombeo.

2. **Costo de energía**

 El consumo de energía para aeración debe efectuarse de acuerdo al equipo utilizado. Con el uso de compresores, el consumo de energía se aproxima al 100% de la capacidad energética instalada para los compresores. Con aeración mecánica debe darse consideración al posible ahorro en períodos de baja demanda. El consumo de energía para este caso es determinado a partir de la carga de DBO en el tanque de aeración. Un ejemplo de este procedimiento se ofrece en la sección III.

 El consumo de energía por bombeo debe analizarse por separado. Usualmente el costo de energía para bombeo es una recta en papel log-log, para una altura de bombeo dada, con coordenadas de costo anual vs. caudal.

 El consumo total de energía se expresa, por lo general, en términos de KWh/año, y el costo anual se obtiene multiplicando por la tarifa respectiva. Debe darse consideración al cálculo de costo de energía por capacidad instalada, si las tarifas locales lo especifican.

3. **Costo de mantenimiento**

 En ausencia de datos de costos pagados sobre mantenimiento de plantas, se pueden usar los siguientes criterios:

 - 0.5% del costo de obra civil para mantenimiento anual del mismo
 - 2% del costo de equipo para mantenimiento anual del mismo

 Los costos de mantenimiento de estaciones de bombeo con bombas tornillo pueden ser evaluados en la misma forma.
Para estaciones con bombas centrífugas se pueden utilizar los siguientes porcentajes globales sobre los costos iniciales:

<table>
<thead>
<tr>
<th>Capacidad</th>
<th>(%) del costo inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.2</td>
</tr>
<tr>
<td>500</td>
<td>3.7</td>
</tr>
<tr>
<td>2000</td>
<td>2.4</td>
</tr>
</tbody>
</table>

4. **Costo de productos químicos**

Se relacionan con el uso de cloro, cloruro férrico y cal. Estos costos también son anuales para los tamaños de planta considerados.

5. **Ensamblaje final y curvas de costo**

Los costos totales anuales por operación y mantenimiento de plantas de tratamiento de aguas residuales son representados por curvas, en las siguientes formas:

- Costo anual por habitante vs. población servida
- Costo anual por 1000 m\(^3\) vs. caudal

Los costos de operación y mantenimiento de estaciones de bombeo son representados por curvas aparte, en la siguiente forma:

- Costo anual excluyendo la energía vs. caudal promedio
- Costo anual de energía vs. caudal promedio

6. **Costos anuales totales**

Los costos financieros anuales pueden ser determinados asumiendo: tasa de interés anual, período de préstamo y forma de pago. La suma de estos más los costos de operación y mantenimiento resulta en costos totales anuales. Estos datos también pueden representarse mediante curvas, comúnmente en términos de:

- Costo anual total por habitante vs. población

III. **EJEMPLO PRACTICO: ENSAMBLAJE DE COSTOS PARA PLANTA GRANDE**

A continuación se presenta un caso práctico correspondiente a una evaluación de costo para tres tipos de plantas de tratamiento de aguas residuales, para una población equivalente de 1'400,000 habitantes, con análisis para implementación en cuatro etapas. Los módulos, por consiguiente, son iguales; de ahí que se obtengan rectas en lugar de curvas. Los datos corresponden a la ciudad de Curitiba, Brasil, y los costos unitarios son promedios para esta ciudad y para Cali, Colombia, en el mes de setiembre de 1974.
Los costos de construcción para las tres alternativas están representados en la figura 1. Los costos de operación y mantenimiento se representan en la figura 2. La figura 3 contiene el criterio utilizado para el cálculo de costos indirectos. En las figuras 4 y 5 se han representado los costos anuales totales en dos formas.

En la figura 5 se incluye además el análisis de costo anual total para la alternativa de construcción de módulos de aeración extendida y "by-pass", para lograr un grado equivalente de tratamiento. Esta es la más económica de todas las alternativas para la planta de 1'400,000 habitantes.

Las bases de diseño están indicadas en el cuadro 1. Las características de las alternativas seleccionadas aparecen en el cuadro 2.

El cuadro 3 contiene un sumario del procedimiento para dimensionar las tres alternativas en términos de parámetros utilizados.

Los costos y características de los equipos mecánicos están indicados en el anexo 1. En los anexos 2 al 5 se encuentra la metodología de evaluación de costos de construcción para los diversos tamaños de planta. En los anexos 6 al 8 se encuentran los requisitos de personal y cálculo de salarios y jornales. En los anexos 9 al 12 se encuentran los cálculos de costos de energía para los cuatro tamaños de planta.

Los costos totales de operación y mantenimiento han sido ensamblados en los anexos 13 al 16, para los cuatro tamaños de planta.

Por último, los costos totales anuales han sido calculados en los anexos 17 al 19 para los tres tipos de planta, y bajo la suposición de que los costos de operación y mantenimiento no varían dentro de cada etapa de implementación de cinco años (incorrecto y efectuado únicamente para desarrollo de orden de magnitud). También se ha asumido un período de préstamo de 20 años e interés del 10% anual. Por facilidad, se ha asumido un pago de interés lineal decreciente y una recuperación de capital uniforme, lo que da un factor promedio de 0.10 en lugar de 0.11746 (con anualidades) para aplicarse al costo global inicial.
<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Población equivalente, habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350,000</td>
</tr>
<tr>
<td>1. Caudal</td>
<td></td>
</tr>
<tr>
<td>a. Promedio anual, l/s</td>
<td>619</td>
</tr>
<tr>
<td>b. Máximo horario seco, l/s</td>
<td>2,223</td>
</tr>
<tr>
<td>c. Máximo horario húmedo, l/s</td>
<td>1,500</td>
</tr>
<tr>
<td>2. Cargas promedio</td>
<td></td>
</tr>
<tr>
<td>a. DBO kg/d</td>
<td>18,750</td>
</tr>
<tr>
<td>b. Sólidos en suspensión, kg/d</td>
<td>18,750</td>
</tr>
</tbody>
</table>
Cuadro 2

PROCESOS Y CARACTERÍSTICAS MÁS RELEVANTES DE CADA ALTERNATIVA

<table>
<thead>
<tr>
<th>Procesos y características</th>
<th>Alternativas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tecnología convencional</td>
</tr>
<tr>
<td></td>
<td>A-2</td>
</tr>
<tr>
<td>1. Tratamiento preliminar</td>
<td></td>
</tr>
<tr>
<td>a. Cribas gruesas</td>
<td>+</td>
</tr>
<tr>
<td>b. Desarenadores aerados</td>
<td>-</td>
</tr>
<tr>
<td>c. Desarenadores cuadrados</td>
<td>+</td>
</tr>
<tr>
<td>2. Tratamiento primario</td>
<td></td>
</tr>
<tr>
<td>a. Tanques rectangulares</td>
<td>-</td>
</tr>
<tr>
<td>b. Tanques circulares</td>
<td>+</td>
</tr>
<tr>
<td>3. Tratamiento secundario</td>
<td></td>
</tr>
<tr>
<td>a. Tanques de aeración</td>
<td></td>
</tr>
<tr>
<td>- Convencional</td>
<td>-</td>
</tr>
<tr>
<td>- Aeración extendida</td>
<td>-</td>
</tr>
<tr>
<td>- Aeración semiextendida</td>
<td>-</td>
</tr>
<tr>
<td>b. Sistema de aeración</td>
<td></td>
</tr>
<tr>
<td>- Aire comprimido</td>
<td>-</td>
</tr>
<tr>
<td>- Aeración mecánica</td>
<td>-</td>
</tr>
<tr>
<td>c. Sedimentación secundaria</td>
<td></td>
</tr>
<tr>
<td>- Tanques rectangulares</td>
<td>-</td>
</tr>
<tr>
<td>- Tanques circulares</td>
<td>-</td>
</tr>
<tr>
<td>d. Cloración en:</td>
<td></td>
</tr>
<tr>
<td>- Tanques</td>
<td>-</td>
</tr>
<tr>
<td>- Canal de descarga</td>
<td>-</td>
</tr>
<tr>
<td>4. Tratamiento y disposición de lodos</td>
<td></td>
</tr>
<tr>
<td>a. Preespesamiento</td>
<td>+</td>
</tr>
<tr>
<td>b. Digestión anaeróbica</td>
<td></td>
</tr>
<tr>
<td>- Una etapa</td>
<td>+</td>
</tr>
<tr>
<td>- Dos etapas</td>
<td>-</td>
</tr>
<tr>
<td>c. Posepesamiento</td>
<td>-</td>
</tr>
<tr>
<td>d. Lechos de secado</td>
<td>+</td>
</tr>
</tbody>
</table>
Cuadro 3
RESUMEN DE PARÁMETROS UTILIZADOS Y DIMENSIONES
DE PROCESOS EN LAS VARIAS ALTERNATIVAS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-2</td>
</tr>
<tr>
<td>A. Tratamiento preliminar</td>
<td></td>
</tr>
<tr>
<td>1. Caudal adoptado, m³/s</td>
<td>6.0</td>
</tr>
<tr>
<td>2. Desarenadores</td>
<td></td>
</tr>
<tr>
<td>a) Carga superficial, m³/m²/h</td>
<td>40.0</td>
</tr>
<tr>
<td>b) Area, m²</td>
<td>540</td>
</tr>
<tr>
<td>c) Número de unidades</td>
<td>4</td>
</tr>
<tr>
<td>d) Area c/u, m²</td>
<td>135</td>
</tr>
<tr>
<td>B. Tratamiento primario</td>
<td></td>
</tr>
<tr>
<td>1. Caudal adoptado, m³/s</td>
<td>6.0</td>
</tr>
<tr>
<td>2. Carga superficial, m³/m²/h</td>
<td>2.0</td>
</tr>
<tr>
<td>3. Area total, m²</td>
<td>10,800</td>
</tr>
<tr>
<td>4. Número de unidades</td>
<td>4</td>
</tr>
<tr>
<td>5. Area c/u, m²</td>
<td>2,700</td>
</tr>
<tr>
<td>6. Profundidad efectiva</td>
<td></td>
</tr>
<tr>
<td>c/u, m³</td>
<td>2</td>
</tr>
<tr>
<td>7. Volumen neto, m³</td>
<td>21,600</td>
</tr>
<tr>
<td>8. Dimensiones c/u, m</td>
<td></td>
</tr>
<tr>
<td>a) Diámetro</td>
<td>57</td>
</tr>
<tr>
<td>9. Carga orgánica, kg DBO/d</td>
<td>75,000</td>
</tr>
<tr>
<td>10. Remoción DBO, %</td>
<td>30</td>
</tr>
<tr>
<td>11. Carga orgánica a secundario, kg DBO/d</td>
<td></td>
</tr>
<tr>
<td>12. Carga de sólidos, kg SS/d</td>
<td>75,000</td>
</tr>
<tr>
<td>13. Remoción de sólidos, kg SS/d</td>
<td>52,500</td>
</tr>
<tr>
<td>14. Carga de sólidos a secundario, kg SS/d</td>
<td></td>
</tr>
<tr>
<td>15. Tiempo de retención (caudal promedio), h</td>
<td>2.43</td>
</tr>
<tr>
<td>16. Tiempo de retención, h</td>
<td>1</td>
</tr>
<tr>
<td>C. Tratamiento secundario</td>
<td></td>
</tr>
<tr>
<td>(aeradores)</td>
<td></td>
</tr>
<tr>
<td>1. Caudal de diseño adoptado, m³/s</td>
<td></td>
</tr>
<tr>
<td>2. Carga orgánica al proceso, kg DBO/d</td>
<td>52,500</td>
</tr>
</tbody>
</table>
Cuadro 3 (cont.)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-2</td>
</tr>
<tr>
<td>3. Carga orgánica por volumen, kg DBO/m³/d.</td>
<td>0.84</td>
</tr>
<tr>
<td>4. Volumen total aeradores, m³</td>
<td>62,500</td>
</tr>
<tr>
<td>5. Número de unidades</td>
<td>12</td>
</tr>
<tr>
<td>6. Volumen c/u, m³</td>
<td>5,210</td>
</tr>
<tr>
<td>7. Período de retención con caudal, prom. anual, h</td>
<td>7</td>
</tr>
<tr>
<td>8. Aire comprimido</td>
<td></td>
</tr>
<tr>
<td>a) Requisitos CF/1b DBO removidas</td>
<td></td>
</tr>
<tr>
<td>b) CFM (promedio anual)</td>
<td></td>
</tr>
<tr>
<td>c) CFM (máximo diario)</td>
<td></td>
</tr>
<tr>
<td>d) CFM (máximo horario)</td>
<td></td>
</tr>
<tr>
<td>e) Requisitos de energía</td>
<td></td>
</tr>
<tr>
<td>- CFM/HP</td>
<td></td>
</tr>
<tr>
<td>- Capacidad instalada, HP</td>
<td></td>
</tr>
<tr>
<td>- Chequeo, kwh/kg DBO removida</td>
<td></td>
</tr>
<tr>
<td>9. Aeración mecánica</td>
<td>2.0</td>
</tr>
<tr>
<td>a) CO/carga, kg O₂/kg DBO</td>
<td>105,000</td>
</tr>
<tr>
<td>b) Requisitos de oxígeno, kg O₂/d</td>
<td></td>
</tr>
<tr>
<td>c) Aeradores adoptados</td>
<td></td>
</tr>
<tr>
<td>- Capacidad kg O₂/kwh (campo)</td>
<td>2</td>
</tr>
<tr>
<td>- Número</td>
<td>24</td>
</tr>
<tr>
<td>- HP c/u</td>
<td>150</td>
</tr>
<tr>
<td>- Capacidad instalada total, HP</td>
<td>3,600</td>
</tr>
<tr>
<td>- Idem, kw</td>
<td>2,680</td>
</tr>
<tr>
<td>- Consumo energía, % cap. inst. (1993)</td>
<td>81.8</td>
</tr>
<tr>
<td>- Consumo oxígeno, kg O₂/kg DBO</td>
<td>1.8 + 10%</td>
</tr>
<tr>
<td>10. Parámetros operacionales</td>
<td></td>
</tr>
<tr>
<td>aerador</td>
<td></td>
</tr>
<tr>
<td>a) SSIM, mg/l</td>
<td>3,500</td>
</tr>
<tr>
<td>b) Retorno de lodos:</td>
<td></td>
</tr>
<tr>
<td>% caudal promedio</td>
<td>107.8</td>
</tr>
<tr>
<td>% máx. hor. seco</td>
<td>80</td>
</tr>
<tr>
<td>m³/s (máximo)</td>
<td>3.910</td>
</tr>
<tr>
<td>m³/s (mínimo)</td>
<td>2.666</td>
</tr>
<tr>
<td>c) Kg DBO/ton SSIM/h</td>
<td>34.28</td>
</tr>
<tr>
<td>d) Kg DBO/kg SSIM (C/M)</td>
<td>0.24</td>
</tr>
<tr>
<td>e) Edad del lodo:</td>
<td></td>
</tr>
<tr>
<td>Gould, d</td>
<td>4.17</td>
</tr>
<tr>
<td>Eckenfelder, d</td>
<td>6.7</td>
</tr>
<tr>
<td>Descripción</td>
<td>Alternativas</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>A-2</td>
</tr>
<tr>
<td>f) Producción de lodo de exceso, kg SS/m³/d</td>
<td>0.512</td>
</tr>
<tr>
<td>g) Índice de volumen de lodos esperado en el aerador</td>
<td>100</td>
</tr>
<tr>
<td>h) Chequeo eficiencia proc. secundario según C., % rem. DBO</td>
<td>91 - 93</td>
</tr>
<tr>
<td>11. Sedimentador secundario</td>
<td></td>
</tr>
<tr>
<td>a) Caudal adoptado, m³/s</td>
<td>4.894</td>
</tr>
<tr>
<td>b) Carga superficial, m³/m²/h</td>
<td>1</td>
</tr>
<tr>
<td>c) Area total, m²</td>
<td>17,620</td>
</tr>
<tr>
<td>d) No. de unidades</td>
<td>8</td>
</tr>
<tr>
<td>e) Area c/u, m²</td>
<td>2,202</td>
</tr>
<tr>
<td>f) Profundidad efectiva, m</td>
<td>2</td>
</tr>
<tr>
<td>g) Volumen neto, c/u, m³</td>
<td>4,400</td>
</tr>
<tr>
<td>h) Período de retención, h</td>
<td>2</td>
</tr>
<tr>
<td>i) Caudal promedio, m³/s</td>
<td>2.474</td>
</tr>
<tr>
<td>j) Caudal recirc., % prom.</td>
<td>100</td>
</tr>
<tr>
<td>k) Caudal total al sedimentador, m³/h</td>
<td>4.948</td>
</tr>
<tr>
<td>l) Carga superficial promedio, m³/m²/h</td>
<td>1.01</td>
</tr>
<tr>
<td>m) Carga de sólidos promedio, kg SS/m²/d</td>
<td>84.9</td>
</tr>
</tbody>
</table>

C. Tratamiento y disposición de sólidos

1. Sólidos removidos
 a) Del proceso primario, kg SS/d | 56,000 | 56,000 | - |
 b) Exceso del secundario, kg SS/d | - | 32,000 | 56,000 |
 c) Total sólidos, kg SS/d | 56,000 | 88,000 | 56,000 |

2. Preespesador
 a) Carga de sólidos, kg SS/d/m² | 30 | 40 | 30 |
 b) Area total, m² | 1,867 | 2,200 | 1,867 |
 c) No. de unidades | 4 4 | 4 4 | 4 4 |
 d) Area c/u | 467 | 550 | 467 |
 e) Profundidad, m | 3 | 3 | 3 |
 f) Contenido de sólidos inferior, % | 4.5 | 4.5 | 4.5 |

3. Digestores
 a) Kg SSV/d | 42,000 | 66,000 |
 b) Carga orgánica, kg SSV/m³/d | 1.714 | 1.347 |

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativas</th>
<th>A-2</th>
<th>B-1</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Vol. digestores, m³</td>
<td></td>
<td>24,500</td>
<td>49,000</td>
<td></td>
</tr>
<tr>
<td>d) No. total digestores</td>
<td></td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>e) Volumen, c/u, m³</td>
<td></td>
<td>6,125</td>
<td>6,125</td>
<td></td>
</tr>
<tr>
<td>f) Reducción de sólidos volátiles, %</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>g) Sólidos en lodo digerido, kg SS/d</td>
<td></td>
<td>35,000</td>
<td>55,000</td>
<td></td>
</tr>
<tr>
<td>h) Período de retención promedio, d</td>
<td></td>
<td>20</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

4. Lechos de secado
 a) Población equiv., hab. | 1'390,000 | 1'390,000 | 1'390,000 |
 b) Carga, PE/m² | 15.9 | 10 | 10 |
 c) Lechos área total m² | 87,500 | 140,000 | 140,000 |
 d) Carga de sólidos promedio, kg SS/d | 35,000 | 55,000 | 56,000 |
 Idem, kg SS/m²/d | 0.40 | 0.393 | 0.400 |

D. Remoción de DBO promedio

1. Remoción global, % | 30 | 93 | 96 |
2. Remoción en los procesos:
 Kg DBO₅/d | | | |
 a) En primario | 22,500 | 22,500 | - |
 b) En secundario | - | 47,250 | 72,000 |
 c) Total | 22,500 | 69,750 | 72,000 |
COSTO DE CONSTRUCCION PARA TRES PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES

COSTO DE OPERACION Y MANTENIMIENTO DE TRES PLANTAS DE TRATAMIENTO DE AGUA RESIDUALES
FIGURA 5

COSTOS INDIRECTOS
(CALI SEPT. 1974)

<table>
<thead>
<tr>
<th>US $ MILLONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 15</td>
</tr>
</tbody>
</table>

- IMPREVISTOS 15 10
- HONORARIOS DE ING. (DISEÑO) 10 6
- INTERVENTORIA 5 0.5
- SEGURO 2 0.5
- CONSTRUCCIÓN Y SUPERVISION 15 8

TOTAL 47 29.5
1 TRATAMIENTO PRIMARIO
2 Lodos Activados Convencional
3 AERACION EXTENDIDA

FIGURA 4
COSTO TOTAL ANUAL DE TRES PLANTAS DE TRATAMIENTO
Figura 5
COSTO TOTAL ANUAL DE PLANTAS DE TRATAMIENTO VS. REMOCIÓN (CALI, SEPT. 1974)

ASUMCIONES
- INTERESES = 10% /AÑO
- PLAZO = 20 AÑOS

1,400,000 HAB.
1,050,000 HAB.
700,000 HAB.
350,000 HAB.

TRATAMIENTO PRIMARIO
- Lodos Activados Convencional
- ABRACIÓN EXTENDIDA
- Módulos de ABRACIÓN EXTENDIDA Y BY-PASS

GRADO DE TRATAMIENTO, % REMOCIÓN DE DBO
<table>
<thead>
<tr>
<th>Descripción y tipo</th>
<th>Alternativas</th>
<th>Capacidad</th>
<th>En instalado</th>
<th>Costo USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cribas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Cribas de limpieza mecánico</td>
<td>1 - 2</td>
<td>5400 m³/h</td>
<td>5</td>
<td>39,250</td>
</tr>
<tr>
<td>2. Decantador</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Equipo removedor de arena (Dorr-O)</td>
<td>1 - 2</td>
<td>5400 m³/h</td>
<td>4</td>
<td>55,380</td>
</tr>
<tr>
<td>b. Decantador</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sedimentador primario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Puente giratorio con desmatadores y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raspadores parabólicos</td>
<td>1 - 2</td>
<td>57 m³</td>
<td>1</td>
<td>65,850</td>
</tr>
<tr>
<td>b. Decantadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ascensores mecánicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Ascensores tipo Simar de ojo fijo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incluido motor y reductores, diámetro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.05 m, 25 rpm</td>
<td>3</td>
<td>110 kw</td>
<td>110</td>
<td>55,850</td>
</tr>
<tr>
<td>b. Iden, diámetro 4.05 m, 25 rpm</td>
<td>3</td>
<td>90 kw</td>
<td>90</td>
<td>55,850</td>
</tr>
<tr>
<td>5. Decantadores secundarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Puente giratorio dehía con desma-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tadores y raspadores parabólicos</td>
<td>2 - 3</td>
<td>53 m³</td>
<td>1</td>
<td>78,850</td>
</tr>
<tr>
<td>6. Espesadores de lodo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Puente, agitador y raspador tipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>piñones</td>
<td>2</td>
<td>26.5 m³</td>
<td>2</td>
<td>55,380</td>
</tr>
<tr>
<td>b. Iden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Regenerador de lodo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bomba de centrifugación de dos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>velocidades, altura nanométrica 3 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Iden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Bombas para espeso de lodo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Decantador primario/bomba centrif-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ámpa, altura nanométrica 6 m</td>
<td>1 - 2</td>
<td>120 m³/h</td>
<td>5</td>
<td>7,380</td>
</tr>
<tr>
<td>b. Decantador secundario-espensador:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bomba centrifuga, altura nanométrica 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td>175 m³/h</td>
<td>7.5</td>
<td>7,690</td>
</tr>
<tr>
<td>c. Iden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Espesador de lodo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bomba de espesor de lodo, prensan-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cador-destilador, altura nanométrica 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>1 - 2</td>
<td>35 m³/h</td>
<td>15</td>
<td>20,720</td>
</tr>
<tr>
<td>10. Internador de gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bomba de gestión, altura nano-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>métrica 50 m</td>
<td>1 - 2</td>
<td>30 m³/h</td>
<td>35</td>
<td>13,500</td>
</tr>
<tr>
<td>11. Equipo para desinfección</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Equipo de coextrusión incluyendo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coextrusores, deoxigenadores, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Equipos auxiliares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Unidad de control e instalaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>automáticas</td>
<td>1 - 2</td>
<td>22 m³/h</td>
<td>20</td>
<td>18,150</td>
</tr>
<tr>
<td>b. Iden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Equipos auxiliares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Unidad de control e instalaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>automáticas</td>
<td>1 - 2</td>
<td>22 m³/h</td>
<td>20</td>
<td>18,150</td>
</tr>
<tr>
<td>Descripción del ítem</td>
<td>Cantidad</td>
<td>Costo unitario</td>
<td>Alternativa A-2</td>
<td>Fuente 1</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Descripción del ítem</td>
<td></td>
<td></td>
<td>A-2</td>
<td>Fuente 1</td>
</tr>
<tr>
<td>C. Obras generales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obras civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Exca.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Gruas de licencia mecánica 1250 m²/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Desv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Equipo de medición de caudal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tratamiento preliminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Caja</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tratamiento preliminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Lodos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tratamiento preliminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Estructuras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Concreto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: Los datos se presentan en un formato tabular. La imagen muestra un resumen de estimaciones de costo para obras civiles y equipos para una estación de tratamiento de agua de 250,000 habitantes. Los detalles incluyen el costo unitario y el total de diferentes componentes como concreto, excavación, equipos de licencia, grúas, entre otros, con información en dólares y una fuente de referencia.
<table>
<thead>
<tr>
<th>Descripción del Item</th>
<th>Unidad</th>
<th>Costo unitario US$</th>
<th>A-2</th>
<th>B-1</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Valor US$</td>
<td>US$</td>
<td>Valor US$</td>
<td>US$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>310,100</td>
<td>321,100</td>
<td>324,100</td>
<td>326,100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,960</td>
<td>29,920</td>
<td>30,840</td>
<td>31,760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,960</td>
<td>28,960</td>
<td>28,960</td>
<td>28,960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26,720</td>
<td>26,720</td>
<td>26,720</td>
<td>26,720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20,840</td>
<td>20,840</td>
<td>20,840</td>
<td>20,840</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201,7</td>
<td>209,450</td>
<td>217,210</td>
<td>225,970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,480</td>
<td>106,450</td>
<td>112,410</td>
<td>118,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,480</td>
<td>106,450</td>
<td>112,410</td>
<td>118,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105,420</td>
<td>111,390</td>
<td>117,360</td>
<td>123,330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105,420</td>
<td>111,390</td>
<td>117,360</td>
<td>123,330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>442,210</td>
<td>442,210</td>
<td>442,210</td>
<td>442,210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>382,200</td>
<td>382,200</td>
<td>382,200</td>
<td>382,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226,150</td>
<td>226,150</td>
<td>226,150</td>
<td>226,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>184,180</td>
<td>184,180</td>
<td>184,180</td>
<td>184,180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>155,400</td>
<td>155,400</td>
<td>155,400</td>
<td>155,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116,600</td>
<td>116,600</td>
<td>116,600</td>
<td>116,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85,380</td>
<td>85,380</td>
<td>85,380</td>
<td>85,380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>558,655</td>
<td>558,655</td>
<td>558,655</td>
<td>558,655</td>
</tr>
<tr>
<td></td>
<td></td>
<td>390,325</td>
<td>390,325</td>
<td>390,325</td>
<td>390,325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>253,425</td>
<td>253,425</td>
<td>253,425</td>
<td>253,425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87,000</td>
<td>87,000</td>
<td>87,000</td>
<td>87,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>470,800</td>
<td>470,800</td>
<td>470,800</td>
<td>470,800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>310,000</td>
<td>310,000</td>
<td>310,000</td>
<td>310,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,390</td>
<td>5,390</td>
<td>5,390</td>
<td>5,390</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,260</td>
<td>7,260</td>
<td>7,260</td>
<td>7,260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,500</td>
<td>6,500</td>
<td>6,500</td>
<td>6,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
</tbody>
</table>
Anexo I (cont.)

<table>
<thead>
<tr>
<th>Descripción del ítem</th>
<th>Unidad</th>
<th>Costo unitario</th>
<th>Alternativa</th>
<th>A-2</th>
<th>B-1</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USD</td>
<td>USD</td>
<td>USD</td>
</tr>
<tr>
<td>1. Equipo laboratorio y oficina</td>
<td>a</td>
<td>71,000</td>
<td>42,000</td>
<td>42,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Herramientas y equipos</td>
<td>b</td>
<td>10,500</td>
<td>20,800</td>
<td>20,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Iluminación planta y edificio</td>
<td>c</td>
<td>4,200</td>
<td>7,700</td>
<td>7,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Transformador y subestación eléctrica</td>
<td>d</td>
<td>109,690</td>
<td>752,590</td>
<td>744,690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Equipos</td>
<td></td>
<td></td>
<td></td>
<td>180,015</td>
<td>1,884,785</td>
<td>1,997,915</td>
</tr>
<tr>
<td>Total obras generales</td>
<td></td>
<td></td>
<td></td>
<td>380,015</td>
<td>3,767,375</td>
<td>3,997,915</td>
</tr>
</tbody>
</table>

II. Sumario de costos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>USD</th>
<th>USD</th>
<th>USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total obra civil</td>
<td>1'006,280</td>
<td>2'294,213</td>
<td>2'784,850</td>
<td></td>
</tr>
<tr>
<td>2. Total equipos</td>
<td>765,670</td>
<td>4'322,225</td>
<td>4'223,295</td>
<td></td>
</tr>
<tr>
<td>3. Total costo de construcción</td>
<td>1'771,950</td>
<td>6'616,438</td>
<td>6'608,145</td>
<td></td>
</tr>
</tbody>
</table>

I. Costos indirectos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>USD</th>
<th>USD</th>
<th>USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Impuestos, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Honorarios de ingeniería</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Diseño</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Construcción y supervisión</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Intermediarios, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Seguros de fiabilidad, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Total, %</td>
<td>49,5</td>
<td>36,6</td>
<td>40,0</td>
<td></td>
</tr>
<tr>
<td>6. Costos indirectos</td>
<td>4,5</td>
<td>36,6</td>
<td>40,0</td>
<td></td>
</tr>
</tbody>
</table>

J. Costos de terrenos

<table>
<thead>
<tr>
<th></th>
<th>Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo global de construcción</td>
<td>2'634,680</td>
</tr>
<tr>
<td>Costo global de construcción por habitante equitativo</td>
<td>7.47</td>
</tr>
</tbody>
</table>

* No considerado
<table>
<thead>
<tr>
<th>Descripción del ítem</th>
<th>Unidad</th>
<th>Costo unitario US$</th>
<th>B-1</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Valor</td>
<td>Valor</td>
<td>Valor</td>
</tr>
<tr>
<td>A. Tratamiento preliminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto desembarcador</td>
<td>m³</td>
<td>101.7</td>
<td>1,000</td>
<td>97,200</td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>c. Conexión intercexpor</td>
<td>m</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>d. Estructuras divisorias de concreto</td>
<td>m²</td>
<td>101.7</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>59,070</td>
<td>59,070</td>
<td>59,070</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Cribas de limpieza mecánica, 5,000 m³/h</td>
<td>m³</td>
<td>48,600</td>
<td>2</td>
<td>97,200</td>
</tr>
<tr>
<td>b. Desembracador, 13.6 m</td>
<td>m³</td>
<td>69,165</td>
<td>2</td>
<td>138,330</td>
</tr>
<tr>
<td>c. Equipo de medición de caudal</td>
<td>m</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>260,530</td>
<td>260,530</td>
<td>260,530</td>
</tr>
<tr>
<td>Total tratamiento preliminar</td>
<td></td>
<td>299,600</td>
<td>299,600</td>
<td>299,600</td>
</tr>
<tr>
<td>B. Tratamiento primario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto sedimentador</td>
<td>m³</td>
<td>101.7</td>
<td>1,000</td>
<td>192,230</td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>1,920</td>
<td>1,920</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>195,150</td>
<td>195,150</td>
<td>195,150</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Fuerza de iluminación, removedor de espuma y raspador, diámetro = 27 m</td>
<td>m³</td>
<td>82,300</td>
<td>2</td>
<td>164,600</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>164,600</td>
<td>164,600</td>
<td>164,600</td>
</tr>
<tr>
<td>Total tratamiento primario</td>
<td></td>
<td>360,750</td>
<td>360,750</td>
<td>360,750</td>
</tr>
<tr>
<td>C. Lotes activados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto: acelerador y sedimentadores</td>
<td>m³</td>
<td>101.7</td>
<td>8,760</td>
<td>890,900</td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>48,450</td>
<td>90,000</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>979,900</td>
<td>1,051,600</td>
<td>1,051,600</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Aceleradores mecánicos de 110 kV</td>
<td>m³</td>
<td>62,415</td>
<td>4</td>
<td>245,660</td>
</tr>
<tr>
<td>b. Caudal de 95 kV</td>
<td>m³</td>
<td>64,270</td>
<td>4</td>
<td>269,080</td>
</tr>
<tr>
<td>c. Fuerza, removedor de espuma y raspador diámetro = 53 m</td>
<td>m³</td>
<td>92,300</td>
<td>4</td>
<td>369,200</td>
</tr>
<tr>
<td>d. Fuerza tornillo para lodo de retorno de 1,000/1,500 m³/h</td>
<td>m³</td>
<td>79,200</td>
<td>4</td>
<td>316,800</td>
</tr>
<tr>
<td>e. Caudal de 1,500/2,000 m³/h</td>
<td>m³</td>
<td>92,210</td>
<td>4</td>
<td>316,840</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>1,676,470</td>
<td>1,676,470</td>
<td>1,676,470</td>
</tr>
<tr>
<td>Total lotes activados</td>
<td></td>
<td>3,760,560</td>
<td>3,760,560</td>
<td>3,760,560</td>
</tr>
<tr>
<td>D. Separadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td>m³</td>
<td>101.7</td>
<td>310</td>
<td>35,400</td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>2,240</td>
<td>2,240</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>37,860</td>
<td>37,860</td>
<td>37,860</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Fuerzas, agitador y raspador: filtro diámetro = 28,5 m</td>
<td>m³</td>
<td>69,220</td>
<td>2</td>
<td>138,440</td>
</tr>
<tr>
<td>b. Caudal de 21.3 m</td>
<td>m³</td>
<td>51,220</td>
<td>4</td>
<td>216,880</td>
</tr>
<tr>
<td>c. Bomba centrifuga lodo primario, en 50 cm, 120 m³/h</td>
<td>m³</td>
<td>9,225</td>
<td>4</td>
<td>36,900</td>
</tr>
<tr>
<td>d. Caudal secundario en = 5m. 175 m³/h</td>
<td>m³</td>
<td>9,280</td>
<td>4</td>
<td>36,900</td>
</tr>
<tr>
<td>e. Caudal secundario en = 5m. 175 m³/h</td>
<td>m³</td>
<td>10,000</td>
<td>4</td>
<td>39,200</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>156,890</td>
<td>156,890</td>
<td>156,890</td>
</tr>
<tr>
<td>Total separadores</td>
<td></td>
<td>194,780</td>
<td>194,780</td>
<td>194,780</td>
</tr>
<tr>
<td>Descripción del item</td>
<td>Unidad</td>
<td>Costo unitario</td>
<td>A-2</td>
<td>A-1</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USD</td>
<td>USD</td>
</tr>
<tr>
<td>E. Digestión y transporte de lotos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Masa civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td>m³</td>
<td>109.7</td>
<td>3,050</td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.6</td>
<td>2,400</td>
<td>1,920</td>
</tr>
<tr>
<td>Total masa civil</td>
<td></td>
<td></td>
<td>312,100</td>
<td>824,200</td>
</tr>
<tr>
<td>2. Equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bomba centrífuga logo primario, mm = 6m, 120 m³/h</td>
<td>N°</td>
<td>25,060</td>
<td>2</td>
<td>51,920</td>
</tr>
<tr>
<td>b. Idem, logo secundario, mm = 5m, 175 m³/h</td>
<td>N°</td>
<td>4,040</td>
<td>2</td>
<td>8,080</td>
</tr>
<tr>
<td>c. Idem, 220 m³/h</td>
<td>N°</td>
<td>19,420</td>
<td>2</td>
<td>38,840</td>
</tr>
<tr>
<td>d. Idem, 245 m³/h</td>
<td>N°</td>
<td>19,420</td>
<td>2</td>
<td>38,840</td>
</tr>
<tr>
<td>e. Idem, 300 m³/h</td>
<td>N°</td>
<td>24,050</td>
<td>2</td>
<td>48,100</td>
</tr>
<tr>
<td>f. Bomba plástica: primario espesor de 30m, 75 m³/h</td>
<td>N°</td>
<td>25,060</td>
<td>2</td>
<td>51,920</td>
</tr>
<tr>
<td>g. Idem: logo desalinizado a digestor, 30 m³/h</td>
<td>N°</td>
<td>24,050</td>
<td>2</td>
<td>48,100</td>
</tr>
<tr>
<td>h. Compresor de gas para maquinaria</td>
<td>kW</td>
<td>100,410</td>
<td>2</td>
<td>100,410</td>
</tr>
<tr>
<td>i. Intercambiador de calor</td>
<td>°</td>
<td>32,210</td>
<td>2</td>
<td>64,420</td>
</tr>
<tr>
<td>j. Bomba centrífuga para recirculación mm = 30m, 50 m³/h</td>
<td>N°</td>
<td>4,040</td>
<td>2</td>
<td>8,080</td>
</tr>
<tr>
<td>k. Bomba centrífuga agua fresca, mm = 13m, 30 m³/h</td>
<td>N°</td>
<td>4,040</td>
<td>2</td>
<td>8,080</td>
</tr>
<tr>
<td>l. Tanque de almacenamiento de gas 100 m³</td>
<td>m³</td>
<td>15,000</td>
<td>2</td>
<td>30,000</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td>452,300</td>
<td>884,600</td>
</tr>
<tr>
<td>Total digestión</td>
<td></td>
<td></td>
<td>764,400</td>
<td>1,568,800</td>
</tr>
<tr>
<td>F. Lechera de acero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Masa de lechería</td>
<td>m³</td>
<td>22,440</td>
<td>43,750</td>
<td>102,175</td>
</tr>
<tr>
<td>Total lechería</td>
<td></td>
<td></td>
<td>102,175</td>
<td>1,648,000</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Estructuras de limpieza mecánica</td>
<td>m</td>
<td>58,000</td>
<td>83,080</td>
<td>83,080</td>
</tr>
<tr>
<td>b. Bombas de desagüe a lechería, mm = 30m, 20 m³/h</td>
<td>N°</td>
<td>19,420</td>
<td>2</td>
<td>38,840</td>
</tr>
<tr>
<td>c. Alta bomba para inyección de fluido</td>
<td>m³</td>
<td>2,500</td>
<td>1</td>
<td>25,000</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td>91,140</td>
<td>146,160</td>
</tr>
<tr>
<td>Total lechería de acero</td>
<td></td>
<td></td>
<td>1,114,840</td>
<td>1,734,340</td>
</tr>
<tr>
<td>G. Obras generales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Masa civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Edificio administración</td>
<td>m²</td>
<td>24,000</td>
<td>48,000</td>
<td>48,000</td>
</tr>
<tr>
<td>b. Edificio mantenimiento</td>
<td>m²</td>
<td>9,480</td>
<td>19,800</td>
<td>19,800</td>
</tr>
<tr>
<td>c. Edificio digestores</td>
<td>m²</td>
<td>23,020</td>
<td>46,040</td>
<td>46,040</td>
</tr>
<tr>
<td>d. Excavación general</td>
<td>m³</td>
<td>0.8</td>
<td>4,000</td>
<td>3,200</td>
</tr>
<tr>
<td>e. Camiones</td>
<td>m³</td>
<td>34,000</td>
<td>68,000</td>
<td>68,000</td>
</tr>
<tr>
<td>f. Materiales prefabricados y tuberías de concreto</td>
<td>m</td>
<td>214,000</td>
<td>428,000</td>
<td>856,000</td>
</tr>
<tr>
<td>g. Coperetes canal de desagüe y sy pas</td>
<td>m</td>
<td>101.7</td>
<td>372</td>
<td>38,137</td>
</tr>
<tr>
<td>h. Bloques de protección</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td>367,937</td>
<td>851,631</td>
</tr>
<tr>
<td>2. Equipos generales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Equipos eléctricos y paneles solares, arboleda y bombas</td>
<td>m²</td>
<td>193,000</td>
<td>386,200</td>
<td>866,200</td>
</tr>
</tbody>
</table>
Anexo 3 (cont.)

Descripción del ítem

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Unidad</th>
<th>Costo unitario USD</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Instalación para automatización y control</td>
<td>a</td>
<td>1</td>
<td>190,000</td>
<td>190,000</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Bomba centrífuga agua de lavado, Q = 50m³, 30 m³/h</td>
<td>N°</td>
<td>5</td>
<td>5,390</td>
<td>5,390</td>
<td>5,390</td>
</tr>
<tr>
<td>d.</td>
<td>Bomba centrífuga desvágo m = 10m, 50 m³/h</td>
<td>N°</td>
<td>7</td>
<td>7,700</td>
<td>7,700</td>
<td>7,700</td>
</tr>
<tr>
<td>e.</td>
<td>Ventilación edificio control</td>
<td>a</td>
<td>6</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
</tr>
<tr>
<td>f.</td>
<td>Conductos eléctricos edificio</td>
<td>a</td>
<td>4</td>
<td>4,000</td>
<td>9,000</td>
<td>4,000</td>
</tr>
<tr>
<td>g.</td>
<td>Iluminación</td>
<td>a</td>
<td>3</td>
<td>1,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>h.</td>
<td>Camiones basculantes</td>
<td>N°</td>
<td>16</td>
<td>500</td>
<td>33,000</td>
<td>33,000</td>
</tr>
<tr>
<td>i.</td>
<td>Equipo laboratorio y oficinas</td>
<td>a</td>
<td>2</td>
<td>25,400</td>
<td>50,800</td>
<td>50,800</td>
</tr>
<tr>
<td>j.</td>
<td>Herramientas y eventuales</td>
<td>a</td>
<td>15</td>
<td>15,000</td>
<td>25,000</td>
<td>25,000</td>
</tr>
<tr>
<td>k.</td>
<td>Transformador y subestación eléctrica</td>
<td>a</td>
<td>8</td>
<td>4,400</td>
<td>15,400</td>
<td>15,400</td>
</tr>
<tr>
<td></td>
<td>Total equipos</td>
<td></td>
<td>180,400</td>
<td>1,728,690</td>
<td>1,240,390</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total obras generales</td>
<td></td>
<td>648,427</td>
<td>1,060,327</td>
<td>1,134,727</td>
<td></td>
</tr>
</tbody>
</table>

Sumario de costos

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Costo USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1'995,847</td>
</tr>
<tr>
<td>2.</td>
<td>1'385,950</td>
</tr>
<tr>
<td>3.</td>
<td>2'581,791</td>
</tr>
</tbody>
</table>

Costos indirectos

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Costo USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1'995,847</td>
</tr>
<tr>
<td>2.</td>
<td>1'385,950</td>
</tr>
<tr>
<td>3.</td>
<td>2'581,791</td>
</tr>
</tbody>
</table>

Costos de terceros

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Costo USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1'995,847</td>
</tr>
<tr>
<td>2.</td>
<td>1'385,950</td>
</tr>
<tr>
<td>3.</td>
<td>2'581,791</td>
</tr>
</tbody>
</table>

Costo global de construcción

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Costo USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6,84</td>
</tr>
<tr>
<td>2.</td>
<td>18,82</td>
</tr>
<tr>
<td>3.</td>
<td>34,83</td>
</tr>
</tbody>
</table>

* No considerado
<table>
<thead>
<tr>
<th>Descripción del ítem</th>
<th>Unidad</th>
<th>A</th>
<th>B-1</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Valor US$</td>
<td>US$</td>
<td>Valor US$</td>
</tr>
<tr>
<td>Alternativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.610.020</td>
<td>600</td>
<td>61.020</td>
</tr>
<tr>
<td>A. Tratamiento preliminar</td>
<td></td>
<td>61.020</td>
<td>600</td>
<td>61.020</td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreta desarmador</td>
<td>m³</td>
<td>101.7</td>
<td>600</td>
<td>61.020</td>
</tr>
<tr>
<td>b. Excavación</td>
<td></td>
<td>0.8</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>c. Conexión con interceptos</td>
<td>m</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>d. Estructuras divisorias de concreto</td>
<td>m³</td>
<td>101.7</td>
<td>240</td>
<td>24.410</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>87,630</td>
<td>87,630</td>
<td>108,850</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Grúa de limpieza mecánica, 1500 m³/h</td>
<td>N°</td>
<td>48</td>
<td>355,300</td>
<td>3</td>
</tr>
<tr>
<td>b. Desarmador, 13.6 m</td>
<td>N°</td>
<td>101.7</td>
<td>3</td>
<td>107,500</td>
</tr>
<tr>
<td>c. Equipo de medición de caudal</td>
<td>m</td>
<td>7,500</td>
<td>7,500</td>
<td>7,500</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>355,300</td>
<td>355,300</td>
<td>355,300</td>
</tr>
<tr>
<td>Total tratamiento preliminar</td>
<td></td>
<td>440,730</td>
<td>440,730</td>
<td>462,100</td>
</tr>
<tr>
<td>B. Tratamiento primario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreta sedimentante</td>
<td>m³</td>
<td>101.7</td>
<td>2,850</td>
<td>289,830</td>
</tr>
<tr>
<td>b. Excavación</td>
<td></td>
<td>0.8</td>
<td>2,850</td>
<td>2,850</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>292,730</td>
<td>292,730</td>
<td>292,730</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Puente giratorio, removedor de espuma y raspador, diámetro = 21 m</td>
<td>N°</td>
<td>87,300</td>
<td>3</td>
<td>246,300</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>246,300</td>
<td>246,300</td>
<td>246,300</td>
</tr>
<tr>
<td>Total tratamiento primario</td>
<td></td>
<td>539,630</td>
<td>539,630</td>
<td>539,630</td>
</tr>
<tr>
<td>C. Lodos activados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreta: aeradores y sedimentadores</td>
<td>m³</td>
<td>101.7</td>
<td>33,120</td>
<td>33,120</td>
</tr>
<tr>
<td>b. Excavación</td>
<td></td>
<td>0.8</td>
<td>33,120</td>
<td>33,120</td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td>33,240</td>
<td>33,240</td>
<td>17,740</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Aeradores mecánicos de 110 kW</td>
<td>N°</td>
<td>87,415</td>
<td>18</td>
<td>1483,670</td>
</tr>
<tr>
<td>b. Rueda de 99 kW</td>
<td>N°</td>
<td>49,120</td>
<td>18</td>
<td>1483,670</td>
</tr>
<tr>
<td>c. Puente, removedor de espuma y raspador, diámetro = 21 m</td>
<td>N°</td>
<td>92,300</td>
<td>6</td>
<td>552,800</td>
</tr>
<tr>
<td>d. Bomba centrífuga para lodo de retorno de m³/h</td>
<td>N°</td>
<td>70,300</td>
<td>6</td>
<td>552,800</td>
</tr>
<tr>
<td>e. Rueda de m³/h</td>
<td>N°</td>
<td>87,370</td>
<td>6</td>
<td>552,800</td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>2'542,370</td>
<td>2'542,370</td>
<td>2'542,370</td>
</tr>
<tr>
<td>Total lodos activados</td>
<td></td>
<td>3'102,340</td>
<td>3'102,340</td>
<td>3'102,340</td>
</tr>
</tbody>
</table>
Anexo 4 (cont.)

<table>
<thead>
<tr>
<th>Descripción del Item</th>
<th>Unidad</th>
<th>Costo unitario US$</th>
<th>A-2</th>
<th>B-1</th>
<th>A-2</th>
<th>B-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Empacadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obras civiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td>m³</td>
<td>101.7</td>
<td>525</td>
<td>1,050</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.6</td>
<td>4,200</td>
<td>8,400</td>
<td>4,200</td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58,760</td>
<td>113,520</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Puente, agitador y raspador tipo Pickel, diámetro = 26.5 m</td>
<td>m³</td>
<td>69,220</td>
<td>3</td>
<td>207,660</td>
<td>6</td>
<td>415,320</td>
</tr>
<tr>
<td>b. Línea de 21.9 m</td>
<td>m³</td>
<td>55,370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Bomba centrífuga lodo primario, am = 6, 120 m³/h</td>
<td>m³</td>
<td>9,235</td>
<td>2</td>
<td>27,674</td>
<td>6</td>
<td>55,350</td>
</tr>
<tr>
<td>d. Línea, lodo secundario am = 5 m³/h</td>
<td>m³</td>
<td>9,610</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Línea, lodo secundario am = 5 m³/h</td>
<td>m³</td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>235,330</td>
<td>479,670</td>
</tr>
<tr>
<td>Total adquisiciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>292,090</td>
<td>584,190</td>
</tr>
<tr>
<td>E. Digestión y transporte de lodos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Obras civiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td>m³</td>
<td>101.7</td>
<td>4,575</td>
<td>463,270</td>
<td>9,150</td>
<td>930,540</td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.6</td>
<td>3,600</td>
<td>7,200</td>
<td>3,760</td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>448,130</td>
<td>936,300</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bomba centrífuga lodo primario, am = 60, 120 m³/h</td>
<td>m³</td>
<td>25,660</td>
<td>3</td>
<td>77,880</td>
<td>6</td>
<td>155,760</td>
</tr>
<tr>
<td>b. Línea de 22.8 m³/h</td>
<td>m³</td>
<td>19,420</td>
<td>3</td>
<td>58,260</td>
<td>6</td>
<td>116,520</td>
</tr>
<tr>
<td>c. Línea de 22.5 m³/h</td>
<td>m³</td>
<td>18,650</td>
<td>3</td>
<td>55,950</td>
<td>6</td>
<td>111,900</td>
</tr>
<tr>
<td>d. Línea de 30.0 m³/h</td>
<td>m³</td>
<td>32,310</td>
<td>3</td>
<td>96,930</td>
<td>6</td>
<td>193,860</td>
</tr>
<tr>
<td>e. Intermediario de calor</td>
<td>m³</td>
<td>102,460</td>
<td>3</td>
<td>310,390</td>
<td>6</td>
<td>620,780</td>
</tr>
<tr>
<td>f. Línea de recirculación, am = 300, 50 m³/h</td>
<td>m³</td>
<td>25,950</td>
<td>3</td>
<td>77,850</td>
<td>6</td>
<td>155,700</td>
</tr>
<tr>
<td>g. Bomba centrífuga agua fría, am = 100, 30 m³/h</td>
<td>m³</td>
<td>4,040</td>
<td>2</td>
<td>12,120</td>
<td>3</td>
<td>24,240</td>
</tr>
<tr>
<td>1. Tanque de almacenamiento de lodo 100 m³</td>
<td>m³</td>
<td>24,050</td>
<td>3</td>
<td>72,150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tanque de almacenamiento de lodo 50 m³</td>
<td>m³</td>
<td>15,000</td>
<td>3</td>
<td>45,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>678,450</td>
<td>1,156,930</td>
</tr>
<tr>
<td>Total digestión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,144,600</td>
<td>2,263,230</td>
</tr>
</tbody>
</table>

F. Lecchos de suciedad

<table>
<thead>
<tr>
<th>Descripción del Item</th>
<th>Unidad</th>
<th>Costo unitario US$</th>
<th>A-2</th>
<th>B-1</th>
<th>A-2</th>
<th>B-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecchos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Lecchos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1'535,625</td>
<td>3'457,000</td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Equipos de limpieza mecánica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Bombas de descarga a lechos, am = 300, 30 m³/h</td>
<td>m³</td>
<td>19,420</td>
<td>3</td>
<td>58,260</td>
<td>6</td>
<td>116,520</td>
</tr>
<tr>
<td>c. Bombas para lodo hidrofor, 1 m³/h</td>
<td>m³</td>
<td>2,500</td>
<td>1</td>
<td>2,500</td>
<td>2</td>
<td>5,000</td>
</tr>
<tr>
<td>Descripción del Item</td>
<td>Unidad</td>
<td>Costo unitario US$</td>
<td>A-2</td>
<td>B-1</td>
<td>B-2</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor</td>
<td></td>
<td>Valor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>135,460</td>
<td>207,300</td>
<td>267,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total lechos de nacido</td>
<td></td>
<td>1'867,089</td>
<td>2'664,309</td>
<td>2'664,309</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G. Obras generales

1. Obra civil
 a. Edificio administración
 b. Edificio mancomunado
 c. Edificio digestores
 d. Excavación general
 e. Caminos
 f. Materiales prefabricados y tuberías de concreto
 g. Concreto canal de descarga y muros
 h. Diques de protección

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Valor</th>
<th></th>
<th>Valor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>36,000</td>
<td>72,000</td>
<td>72,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14,400</td>
<td>28,800</td>
<td>28,800</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,000</td>
<td>74,000</td>
<td>74,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 6,600 7,500 8,000 7,500 8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101.7</td>
<td>550 55,935 550 55,935 550 55,935</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H. Sumario de costos

1. Total obra civil
2. Total equipos
3. Total costo de construcción

I. Costos indirecitos

1. Improviedad, I
2. Honorarios de ingeniería
 a. Despacho, I
 b. Construcción, I
3. Interventoría, I
4. Seguros de estabilidad, I
5. Total, I
6. Costos indirecitos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Valor</th>
<th></th>
<th>Valor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>37.8 30.1 31.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J. Costos de tercera *

* No considerado

K. Grupo global de construcción

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Valor</th>
<th></th>
<th>Valor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>67847,006</td>
<td>18'652,627</td>
<td>14'938,760</td>
<td></td>
</tr>
</tbody>
</table>

L. Costo global de construcción por habitantes equivalentes

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.62</td>
<td>16.05</td>
<td>11.23</td>
</tr>
</tbody>
</table>
Anexo 5

**ESTIMACIÓN DE COSTO DE OBRA CIVIL Y EQUIPOS PARA
ESTACIONES DE 1,000,000 HABITANTES (75000 kg hdo/d)**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Tratamiento Preliminar</td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
</tr>
<tr>
<td>a. Mampostería</td>
<td>m³</td>
<td>101.7</td>
<td>800</td>
<td>81,160</td>
<td>800</td>
<td>81,160</td>
<td>800</td>
<td>81,160</td>
<td>800</td>
<td>81,160</td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>300</td>
<td>2,400</td>
<td>300</td>
<td>2,400</td>
<td>300</td>
<td>2,400</td>
<td>300</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>c. Conexión con interceptores</td>
<td>m³</td>
<td>101.7</td>
<td>320</td>
<td>32,540</td>
<td>320</td>
<td>32,540</td>
<td>320</td>
<td>32,540</td>
<td>320</td>
<td>32,540</td>
<td></td>
</tr>
<tr>
<td>d. Estructuras divisoras de concurso</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td></td>
<td>115,900</td>
<td>115,900</td>
<td></td>
<td>144,380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
</tr>
<tr>
<td>a. Grutes de limpieza mecánica, 5000 m³/h</td>
<td></td>
<td>44,660</td>
<td></td>
<td>194,600</td>
<td></td>
<td>194,600</td>
<td></td>
<td>194,600</td>
<td></td>
<td>194,600</td>
<td></td>
</tr>
<tr>
<td>b. Desacelerador, 12.6 m</td>
<td></td>
<td>69,165</td>
<td></td>
<td>270,660</td>
<td></td>
<td>270,660</td>
<td></td>
<td>270,660</td>
<td></td>
<td>270,660</td>
<td></td>
</tr>
<tr>
<td>c. Equipo de medición de caudal</td>
<td></td>
<td>10,000</td>
<td></td>
<td>10,000</td>
<td></td>
<td>10,000</td>
<td></td>
<td>10,000</td>
<td></td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td></td>
<td>481,060</td>
<td>481,060</td>
<td></td>
<td>594,280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tratamiento preliminar</td>
<td></td>
<td></td>
<td></td>
<td>596,960</td>
<td>596,960</td>
<td></td>
<td>625,680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Tratamiento primario</td>
<td></td>
</tr>
<tr>
<td>1. Pocer civil</td>
<td></td>
</tr>
<tr>
<td>a. Mampostería</td>
<td>m³</td>
<td>101.7</td>
<td>3,600</td>
<td>3,840</td>
<td>3,840</td>
<td>3,840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>4,800</td>
<td>3,840</td>
<td>3,840</td>
<td>3,840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td></td>
<td>390,000</td>
<td>390,000</td>
<td></td>
<td>329,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
</tr>
<tr>
<td>a. Puente giratorio, rompedor de espuma y raspador, diámetro = 27 %</td>
<td>m³</td>
<td>82,300</td>
<td>82,300</td>
<td>82,300</td>
<td>82,300</td>
<td>82,300</td>
<td>82,300</td>
<td>82,300</td>
<td>82,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td></td>
<td>329,200</td>
<td>329,200</td>
<td></td>
<td>329,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tratamiento principal</td>
<td></td>
<td></td>
<td></td>
<td>319,500</td>
<td>319,500</td>
<td></td>
<td>319,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Lodos activados</td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
</tr>
<tr>
<td>a. Mampostería: aeradores y colectores</td>
<td>m³</td>
<td>101.7</td>
<td>137,520</td>
<td>1'737,400</td>
<td>137,520</td>
<td>1'737,400</td>
<td>137,520</td>
<td>1'737,400</td>
<td>137,520</td>
<td>1'737,400</td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>92,270</td>
<td>70,560</td>
<td>70,560</td>
<td>70,560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
<td></td>
<td></td>
<td>1'859,960</td>
<td>1'859,960</td>
<td></td>
<td>2'429,360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
</tr>
<tr>
<td>a. Aeradores mecánicos de 100 kW</td>
<td>m³</td>
<td>87,415</td>
<td></td>
<td>1'377,950</td>
<td></td>
<td>1'377,950</td>
<td></td>
<td>1'377,950</td>
<td></td>
<td>1'377,950</td>
<td></td>
</tr>
<tr>
<td>b. Aeradores hidráulicos de 50 kW</td>
<td>m³</td>
<td>69,320</td>
<td></td>
<td>1'032,300</td>
<td></td>
<td>1'032,300</td>
<td></td>
<td>1'032,300</td>
<td></td>
<td>1'032,300</td>
<td></td>
</tr>
<tr>
<td>c. Puente, rompedor de espuma y raspador, diámetro = 35 m</td>
<td>m³</td>
<td>92,390</td>
<td>92,390</td>
<td>92,390</td>
<td>92,390</td>
<td>92,390</td>
<td>92,390</td>
<td>92,390</td>
<td>92,390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Bomba telescópica para lodo de retorno de 3 m³/h</td>
<td>m³</td>
<td>70,200</td>
<td>613,360</td>
<td>613,360</td>
<td>613,360</td>
<td>613,360</td>
<td>613,360</td>
<td>613,360</td>
<td>613,360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Aeradores de millones m³/h</td>
<td>m³</td>
<td>92,370</td>
<td></td>
<td>738,190</td>
<td></td>
<td>738,190</td>
<td></td>
<td>738,190</td>
<td></td>
<td>738,190</td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td></td>
<td></td>
<td>3'369,860</td>
<td>3'369,860</td>
<td></td>
<td>4'503,920</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total lodos activados</td>
<td></td>
<td></td>
<td></td>
<td>5'209,820</td>
<td>5'209,820</td>
<td></td>
<td>7'533,280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descripción del ítem</td>
<td>Unidad</td>
<td>Costo unitario ($/h)</td>
<td>Alternativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-1</td>
<td>B-1</td>
<td>C-1</td>
<td>D-1</td>
<td>A-2</td>
<td>B-2</td>
<td>C-2</td>
<td>D-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor</td>
<td>$/h</td>
<td>Valor</td>
<td>$/h</td>
<td>Valor</td>
<td>$/h</td>
<td>Valor</td>
<td>$/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Regadoretes</td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td>m³</td>
<td>101.1</td>
<td>200</td>
<td>1,400</td>
<td>720</td>
<td>75,660</td>
<td>151,360</td>
<td>77,720</td>
<td>44,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>5,600</td>
<td>21,200</td>
<td>5,600</td>
<td>44,400</td>
<td>5,600</td>
<td>5,600</td>
<td>5,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
</tr>
<tr>
<td>a. Puesta, agitador y tamizador tipo Picket, diámetro = 26.5 m</td>
<td>m²</td>
<td>66,220</td>
<td>4</td>
<td>276,880</td>
<td>8</td>
<td>553,760</td>
<td>4</td>
<td>213,040</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Lava de 31.5 m</td>
<td>m²</td>
<td>53,230</td>
<td>4</td>
<td>213,040</td>
<td>4</td>
<td>213,040</td>
<td>4</td>
<td>213,040</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Rincon cisterna lodo primario, an = 5m, 120 m³/h</td>
<td>m²</td>
<td>9,225</td>
<td>4</td>
<td>36,900</td>
<td>8</td>
<td>73,800</td>
<td>6</td>
<td>38,400</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Rincon lodo secundario, an = 5m, 125 m³/h</td>
<td>m²</td>
<td>9,610</td>
<td>4</td>
<td>38,440</td>
<td>6</td>
<td>38,440</td>
<td>6</td>
<td>38,440</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Lava, lodo secundario, an = 5m, 245 m³/h</td>
<td>m²</td>
<td>10,000</td>
<td>4</td>
<td>40,000</td>
<td>6</td>
<td>40,000</td>
<td>6</td>
<td>40,000</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
</tr>
<tr>
<td>Q. Digestión y transporte de lodos</td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
</tr>
<tr>
<td>a. Concreto</td>
<td>m³</td>
<td>101.1</td>
<td>6,100</td>
<td>620,360</td>
<td>32,200</td>
<td>640,000</td>
<td>128,000</td>
<td>128,000</td>
<td>128,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Excavación</td>
<td>m³</td>
<td>0.8</td>
<td>4,800</td>
<td>3,840</td>
<td>9,600</td>
<td>7,680</td>
<td>7,680</td>
<td>7,680</td>
<td>7,680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
</tr>
<tr>
<td>a. Bomba cisterna lodo primario, an = 5m, 130 m³/h</td>
<td>m²</td>
<td>25,260</td>
<td>4</td>
<td>101,040</td>
<td>8</td>
<td>202,080</td>
<td>8</td>
<td>202,080</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Lava, lodo secundario, an = 5m, 175 m³/h</td>
<td>m²</td>
<td>19,420</td>
<td>4</td>
<td>77,680</td>
<td>8</td>
<td>155,360</td>
<td>8</td>
<td>155,360</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Lava, 220 m³/h</td>
<td>m²</td>
<td>103,660</td>
<td>4</td>
<td>414,640</td>
<td>8</td>
<td>829,280</td>
<td>8</td>
<td>829,280</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Lava, 220 m³/h</td>
<td>m²</td>
<td>32,310</td>
<td>4</td>
<td>129,240</td>
<td>8</td>
<td>258,480</td>
<td>8</td>
<td>258,480</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Lava, 30 m³/h</td>
<td>m³</td>
<td>25,960</td>
<td>4</td>
<td>103,840</td>
<td>8</td>
<td>207,680</td>
<td>8</td>
<td>207,680</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Bomba pistón: primario, an = 30m, 12 m³/h</td>
<td>m²</td>
<td>19,420</td>
<td>4</td>
<td>77,680</td>
<td>8</td>
<td>155,360</td>
<td>8</td>
<td>155,360</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Lava, 30 m³/h</td>
<td>m³</td>
<td>103,660</td>
<td>4</td>
<td>414,640</td>
<td>8</td>
<td>829,280</td>
<td>8</td>
<td>829,280</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Compressor de gas para mezcla, 50 kw</td>
<td>h</td>
<td>32,310</td>
<td>4</td>
<td>129,240</td>
<td>8</td>
<td>258,480</td>
<td>8</td>
<td>258,480</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Calentador de calor</td>
<td>h</td>
<td>25,960</td>
<td>4</td>
<td>103,840</td>
<td>8</td>
<td>207,680</td>
<td>8</td>
<td>207,680</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Bomba pistón para resecación, an = 30m, 50 m³/h</td>
<td>m²</td>
<td>6,960</td>
<td>4</td>
<td>16,190</td>
<td>4</td>
<td>16,190</td>
<td>4</td>
<td>16,190</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Bomba cisterna agua rica, an = 10m, 30 m³/h</td>
<td>m²</td>
<td>4,040</td>
<td>4</td>
<td>16,190</td>
<td>4</td>
<td>16,190</td>
<td>4</td>
<td>16,190</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Tanque de almacenamiento de gas 100 m³</td>
<td>m³</td>
<td>24,050</td>
<td>2</td>
<td>48,100</td>
<td>2</td>
<td>48,100</td>
<td>2</td>
<td>48,100</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Tanque de gas de 50 m³</td>
<td>m³</td>
<td>19,000</td>
<td>2</td>
<td>38,000</td>
<td>2</td>
<td>38,000</td>
<td>2</td>
<td>38,000</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
</tr>
<tr>
<td>Total digestión</td>
<td></td>
</tr>
<tr>
<td>F. Lechos de vaciado</td>
<td></td>
</tr>
<tr>
<td>1. Obra civil</td>
<td></td>
</tr>
<tr>
<td>a. Lechos</td>
<td>m³</td>
<td>23.44</td>
<td>87,500</td>
<td>2'047,100</td>
<td>140,000</td>
<td>2'726,300</td>
<td>140,000</td>
<td>2'726,300</td>
<td>140,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total obra civil</td>
<td></td>
</tr>
<tr>
<td>2. Equipos</td>
<td></td>
</tr>
<tr>
<td>a. Equipos de limpieza mecánica</td>
<td></td>
</tr>
<tr>
<td>b. Bomba de despiece a lechos, an = 50m, 20 m³/h</td>
<td>m³</td>
<td>19,420</td>
<td>4</td>
<td>77,680</td>
<td>6</td>
<td>155,360</td>
<td>6</td>
<td>155,360</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Bomba para lodo hidroforza, m³/h</td>
<td>m³</td>
<td>2,500</td>
<td>3</td>
<td>7,500</td>
<td>2</td>
<td>7,500</td>
<td>2</td>
<td>7,500</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descripción del Item</td>
<td>Unidad</td>
<td>Costo unitario US$</td>
<td>A-2</td>
<td>B-1</td>
<td>B-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Value</td>
<td>US$</td>
<td>Value</td>
<td>US$</td>
<td>Value</td>
<td>US$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total equipos</td>
<td></td>
<td>179,700</td>
<td>287,680</td>
<td>287,680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hectas de secado</td>
<td>2'272,280</td>
<td>3'563,180</td>
<td>3'563,180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Obras Generales

1. **Obras civiles**
 a. Edificio administración
 b. Edificio mantenimiento
 c. Edificio digestores
 d. Excepción general
 e. Canales
 f. Materiales prefabricados y armados de concreto
 g. Concreto canal de descarga y bolsa
 h. Dícesis de protección

2. **Equipos generales**
 a. Equipo eléctrico y panel de control
 b. Instalación para automatización y control
 c. Equipo centrífugo agua de lavado, 6m³/h, 20m²/h
 d. Bomba centrífuga de agua a 90m, 50m³/h
 e. Ventilación edificio central
 f. Conductos eléctricos edificio
 g._items digestores
 h. Contenidos reciclables
 i. Grupo laboratorio y oficina
 j. Herramientas y utensilios
 k. Iluminación y equipo eléctrico
 l. Transformador y subestación eléctrica

Total obras generales

B. Tomanos de cosecha

1. **Total obra civiles**
2. **Total equipos**
3. **Total costo de construcción**

C. Costos indirectos

1. **Impuestos, etc.**
2. **Reparaciones y mantenimiento**
3. **Equivalente de personal**
4. **Seguro de carácter civil**
5. **Seguro de carácter comercial**

D. Costos de suministro

E. Costo global de construcción

F. Costo global de construcción por habitantes equivalentes
Anexo 6
COSTOS DE SALARIOS Y JORNADAS DE PERSONAL
(TRATAMIENTO PRIMARIO MAS DIGESTION)

<table>
<thead>
<tr>
<th>Función</th>
<th>Salario US$ año</th>
<th>Tamaño planta, habitantes</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>$/año</td>
<td>No.</td>
<td>$/año</td>
<td>No.</td>
<td>$/año</td>
</tr>
<tr>
<td>1. Operador jefe</td>
<td>5,000</td>
<td>1</td>
<td>5,000</td>
<td>1</td>
<td>5,000</td>
<td>1</td>
</tr>
<tr>
<td>2. Operador</td>
<td>1,400</td>
<td>1</td>
<td>1,400</td>
<td>1</td>
<td>1,400</td>
<td>1</td>
</tr>
<tr>
<td>3. Asistente de laboratorio</td>
<td>1,400</td>
<td>1</td>
<td>1,400</td>
<td>1</td>
<td>1,400</td>
<td>1</td>
</tr>
<tr>
<td>4. Químico asistente</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5. Mecánico</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>2</td>
</tr>
<tr>
<td>6. Electricista</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
</tr>
<tr>
<td>7. Trabajadores</td>
<td>700</td>
<td>4</td>
<td>2,800</td>
<td>6</td>
<td>4,200</td>
<td>8</td>
</tr>
<tr>
<td>8. Guardianes</td>
<td>700</td>
<td>2</td>
<td>1,400</td>
<td>2</td>
<td>1,400</td>
<td>2</td>
</tr>
<tr>
<td>9. Choferes</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td>15,000</td>
<td>14</td>
<td>16,400</td>
<td>18</td>
<td>22,800</td>
</tr>
<tr>
<td>Función</td>
<td>Salario US$ / año</td>
<td>Tamaño planta, habitantes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>350,000 / año</td>
<td>700,000 / año</td>
<td>1,050,000 / año</td>
<td>1,400,000 / año</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>$ / año</td>
<td>No.</td>
<td>$ / año</td>
<td>No.</td>
<td>$ / año</td>
</tr>
<tr>
<td>1. Ingeniero sanitario</td>
<td>7,000</td>
<td>1</td>
<td>7,000</td>
<td>1</td>
<td>7,000</td>
<td>1</td>
</tr>
<tr>
<td>2. Secretaria</td>
<td>1,600</td>
<td>1</td>
<td>1,600</td>
<td>1</td>
<td>1,600</td>
<td>1</td>
</tr>
<tr>
<td>3. Operador jefe</td>
<td>5,000</td>
<td>1</td>
<td>5,000</td>
<td>1</td>
<td>5,000</td>
<td>1</td>
</tr>
<tr>
<td>4. Operador</td>
<td>1,400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,400</td>
<td>1</td>
</tr>
<tr>
<td>5. Químico asistente</td>
<td>4,000</td>
<td>1</td>
<td>4,000</td>
<td>1</td>
<td>4,000</td>
<td>1</td>
</tr>
<tr>
<td>6. Asistente de laboratorio</td>
<td>1,400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,400</td>
<td>1</td>
</tr>
<tr>
<td>7. Mecánico-electricista jefe</td>
<td>3,200</td>
<td>1</td>
<td>3,200</td>
<td>1</td>
<td>3,200</td>
<td>1</td>
</tr>
<tr>
<td>8. Mecánico</td>
<td>1,000</td>
<td>4</td>
<td>4,000</td>
<td>6</td>
<td>6,000</td>
<td>8</td>
</tr>
<tr>
<td>9. Electricista</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>2</td>
<td>2,000</td>
<td>2</td>
</tr>
<tr>
<td>10. Trabajadores</td>
<td>700</td>
<td>12</td>
<td>8,400</td>
<td>15</td>
<td>10,500</td>
<td>18</td>
</tr>
<tr>
<td>11. Guardianes</td>
<td>700</td>
<td>2</td>
<td>1,400</td>
<td>2</td>
<td>1,400</td>
<td>2</td>
</tr>
<tr>
<td>12. Choferes</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>36,600</td>
<td>31</td>
<td>41,700</td>
<td>39</td>
<td>49,600</td>
</tr>
</tbody>
</table>
Anexo 8
COSTOS DE SALARIOS Y JORNALES DE PERSONAL
PLANTAS DE AERACION EXTENDIDA

<table>
<thead>
<tr>
<th>Función</th>
<th>Salario US$ año</th>
<th>Tamaño planta, habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350,000</td>
<td>700,000</td>
</tr>
<tr>
<td>1. Ingeniero sanitario</td>
<td>7,000</td>
<td>1 7,000</td>
</tr>
<tr>
<td>2. Secretaria</td>
<td>1,600</td>
<td>1 1,600</td>
</tr>
<tr>
<td>3. Operador jefe</td>
<td>5,000</td>
<td>1 5,000</td>
</tr>
<tr>
<td>4. Operador</td>
<td>1,400</td>
<td>-</td>
</tr>
<tr>
<td>5. Químico asistente</td>
<td>4,000</td>
<td>1 4,000</td>
</tr>
<tr>
<td>6. Asistente de laboratorio</td>
<td>1,400</td>
<td>-</td>
</tr>
<tr>
<td>7. Mecánico-electricista jefe</td>
<td>3,200</td>
<td>1 3,200</td>
</tr>
<tr>
<td>8. Mecánico</td>
<td>1,000</td>
<td>2 2,000</td>
</tr>
<tr>
<td>9. Electricista</td>
<td>1,000</td>
<td>1 1,000</td>
</tr>
<tr>
<td>10. Trabajadores</td>
<td>700</td>
<td>10 7,000</td>
</tr>
<tr>
<td>11. Guardianes</td>
<td>700</td>
<td>2 1,400</td>
</tr>
<tr>
<td>12. Choferes</td>
<td>1,000</td>
<td>1 1,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21 33,200</td>
<td>27 38,300</td>
</tr>
</tbody>
</table>
Anexo 9
CALCULO DEL COSTO DE CEBADA PARA LAS PLANTAS DE TRAZOLOGIA, AÑO 1975

Cuando planta: 350,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>A 2</th>
<th>B 1</th>
<th>B 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energía para aeración</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. DBO en tanque de aeración</td>
<td>kg/día</td>
<td>12,933</td>
<td>18,476</td>
<td></td>
</tr>
<tr>
<td>b. Oxígeno consumido</td>
<td>kg O₂/kg DBO</td>
<td>1.98</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>c. Oxígeno abastecido</td>
<td>kg O₂/KWh</td>
<td>1.8 +10%</td>
<td>1.9 +10%</td>
<td>2</td>
</tr>
<tr>
<td>D. Energía consumida</td>
<td>KWh/día</td>
<td>12,803</td>
<td>19,307</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mWh/año</td>
<td>4,672</td>
<td>7,047</td>
<td></td>
</tr>
<tr>
<td>2. Energía de otros equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Capacidad instalada global</td>
<td>KW</td>
<td>140</td>
<td>260</td>
<td>110</td>
</tr>
<tr>
<td>b. Intermitencia global</td>
<td>%</td>
<td>50.0</td>
<td>46.0</td>
<td>50.7</td>
</tr>
<tr>
<td>c. Energía consumida</td>
<td>mWh/año</td>
<td>613</td>
<td>1,048</td>
<td>489</td>
</tr>
<tr>
<td>3. Total energía consumida</td>
<td>mWh/año</td>
<td>613</td>
<td>5,720</td>
<td>7,157</td>
</tr>
<tr>
<td>4. Costo de energía a US$8,3/mWh</td>
<td>$/año</td>
<td>5,088</td>
<td>47,476</td>
<td>59,403</td>
</tr>
</tbody>
</table>
Anexo 10
CALCULO DEL COSTO DE ENERGÍA PARA LAS PLANTAS DE TRATAMIENTO. AÑO 1975

Tamaño planta: 700,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>A 2</th>
<th>B 1</th>
<th>B 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energía para aeración</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ODO en tanque de aeration</td>
<td>kg/día</td>
<td>17,357</td>
<td>24,796</td>
<td></td>
</tr>
<tr>
<td>b. Oxígeno consumido</td>
<td>kg O₂/kg ODO</td>
<td>1.98</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>c. Oxígeno abastecido</td>
<td>kg O₂/kWh</td>
<td>1.8 10%</td>
<td>1.9 10%</td>
<td></td>
</tr>
<tr>
<td>D. Energía consumida</td>
<td>KWh/día</td>
<td>17,184</td>
<td>25,912</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mWh/año</td>
<td>6,272</td>
<td>9,457</td>
<td></td>
</tr>
<tr>
<td>2. Energía de otros equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Capacidad instalada global</td>
<td>KW</td>
<td>270</td>
<td>470</td>
<td>170</td>
</tr>
<tr>
<td>b. Intermittencia global</td>
<td>%</td>
<td>50.0</td>
<td>50.0</td>
<td>55.7</td>
</tr>
<tr>
<td>c. Energía consumida</td>
<td>mWh/año</td>
<td>1,182</td>
<td>2,060</td>
<td>934</td>
</tr>
<tr>
<td>3. Total energía consumida</td>
<td>mWh/año</td>
<td>1,182</td>
<td>8,332</td>
<td>10,391</td>
</tr>
<tr>
<td>4. Costo de energía a US$/8.3/mWh</td>
<td>$/año</td>
<td>9,810</td>
<td>69,156</td>
<td>86,245</td>
</tr>
</tbody>
</table>
Anexo II

CÁLCULO DEL COSTO DE ENERGÍA PARA LAS PLANTAS DE LIMPIEZA. AÑO 1975

Tamaño planta: 1'050,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Alternativa A 2</th>
<th>Alternativa B 1</th>
<th>Alternativa B 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energía para aeration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. DBO en tanque de aeration</td>
<td>kg/día</td>
<td>29,825</td>
<td>42,608</td>
<td></td>
</tr>
<tr>
<td>b. Oxígeno consumido</td>
<td>kg O₂/ kg DBO</td>
<td>1.98</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>c. Oxígeno abastecido</td>
<td>kg O₂/KWh</td>
<td>1.8 10%</td>
<td>1.9 10%</td>
<td></td>
</tr>
<tr>
<td>D. Energía consumida</td>
<td>KWh/día</td>
<td>29,527</td>
<td>44,525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mWh/año</td>
<td>10,777</td>
<td>16,251</td>
<td></td>
</tr>
<tr>
<td>2. Energía de otros equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Capacidad instalada global</td>
<td>KW</td>
<td>480</td>
<td>610</td>
<td>230</td>
</tr>
<tr>
<td>b. Intermitencia global</td>
<td>%</td>
<td>50.0</td>
<td>57.4</td>
<td>68.5</td>
</tr>
<tr>
<td>c. Energía consumida</td>
<td>mWh/año</td>
<td>2,102</td>
<td>3,066</td>
<td>1,381</td>
</tr>
<tr>
<td>3. Total energía consumada</td>
<td>mWh/año</td>
<td>2,102</td>
<td>13,843</td>
<td>17,632</td>
</tr>
<tr>
<td>4. Costo de energía a USS8.3/mWh</td>
<td>$/año</td>
<td>17,466</td>
<td>114,897</td>
<td>146,346</td>
</tr>
</tbody>
</table>
Anexo 12

CALCULO DEL COSTO DE ENERGIA PARA LAS PLANTAS DE TRATAMIENTO. AÑO 1975

Tamaño planta: 1'400,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>A 2</th>
<th>B 1</th>
<th>B 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energía para aeración</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. DBO en tanque de aeración</td>
<td>kg/día</td>
<td>40,240</td>
<td>57,486</td>
<td></td>
</tr>
<tr>
<td>b. Oxígeno consumido</td>
<td>kg O², kg DBO</td>
<td>1.98</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>c. Oxígeno abastecido</td>
<td>kg O², KWh</td>
<td>1.8 10%</td>
<td>1.9 10%</td>
<td></td>
</tr>
<tr>
<td>D. Energía consumida</td>
<td>KWh/día</td>
<td>39,838</td>
<td>60,072</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mWh/año</td>
<td>14,540</td>
<td>21,926</td>
<td></td>
</tr>
<tr>
<td>2. Energía de otros equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Capacidad instalada global</td>
<td>KW</td>
<td>535</td>
<td>890</td>
<td>290</td>
</tr>
<tr>
<td>b. Intermitencia global</td>
<td>%</td>
<td>50.0</td>
<td>52.2</td>
<td>72.0</td>
</tr>
<tr>
<td>c. Energía consumida</td>
<td>mWh/año</td>
<td>2,343</td>
<td>4,071</td>
<td>1,830</td>
</tr>
<tr>
<td>3. Total energía consumida</td>
<td>mWh/año</td>
<td>2,343</td>
<td>18,611</td>
<td>23,756</td>
</tr>
<tr>
<td>4. Costo de energía a US$8.3/mWh</td>
<td>$/año</td>
<td>19,447</td>
<td>154,471</td>
<td>197,175</td>
</tr>
<tr>
<td>Descripción</td>
<td>Alternativa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>B1</td>
<td>B2</td>
<td>B2 Brasil</td>
</tr>
<tr>
<td>1. Salarios y jornales de personal</td>
<td>15,000</td>
<td>36,600</td>
<td>33,200</td>
<td>51,692</td>
</tr>
<tr>
<td>2. Costo de energía</td>
<td>5,088</td>
<td>47,476</td>
<td>59,403</td>
<td>131,927</td>
</tr>
<tr>
<td>3. Costo de mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. De obra civil al 0.5%</td>
<td>5,026</td>
<td>10,471</td>
<td>8,934</td>
<td></td>
</tr>
<tr>
<td>b. De equipos al 2.0%</td>
<td>14,873</td>
<td>49,544</td>
<td>44,480</td>
<td></td>
</tr>
<tr>
<td>c. Total</td>
<td>19,899</td>
<td>60,015</td>
<td>53,414</td>
<td>51,538</td>
</tr>
<tr>
<td>4. Gastos administrativos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Productos químicos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Total operación y mantenimiento</td>
<td>39,987</td>
<td>144,091</td>
<td>146,017</td>
<td>235,157</td>
</tr>
<tr>
<td>7. Costo total por habitante</td>
<td>0.114</td>
<td>0.412</td>
<td>0.417</td>
<td>0.672</td>
</tr>
</tbody>
</table>

* No incluidos.
Anexo 13

COSTO TOTAL DE OPERACIÓN Y MANTENIMIENTO PARA PLANTAS DE TREATAMIENTO DE AGUAS RESIDUALES (US$/AÑO)

Tamaño planta: 350,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativa A 2</th>
<th>Alternativa B 1</th>
<th>Alternativa B 2</th>
<th>B 2 Brasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salarios y jornales de personal</td>
<td>15,000</td>
<td>36,600</td>
<td>33,200</td>
<td>51,692</td>
</tr>
<tr>
<td>2. Costo de energía</td>
<td>5,088</td>
<td>47,476</td>
<td>59,403</td>
<td>131,927</td>
</tr>
<tr>
<td>3. Costo de mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. De obra civil al 0.5%</td>
<td>5,026</td>
<td>10,471</td>
<td>8,934</td>
<td></td>
</tr>
<tr>
<td>b. De equipos al 2.0%</td>
<td>14,873</td>
<td>49,544</td>
<td>44,480</td>
<td></td>
</tr>
<tr>
<td>c. Total</td>
<td>19,899</td>
<td>60,015</td>
<td>53,414</td>
<td>51,538</td>
</tr>
<tr>
<td>4. Gastos administrativos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Productos químicos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Total operación y mantenimiento</td>
<td>39,987</td>
<td>144,091</td>
<td>146,017</td>
<td>235,157</td>
</tr>
<tr>
<td>7. Costo total por habitante</td>
<td>0.114</td>
<td>0.412</td>
<td>0.417</td>
<td>0.672</td>
</tr>
</tbody>
</table>

* No incluidos.
Anexo 14

Costo total de operación y mantenimiento para plantas de tratamiento de aguas residuales (US$/año)

Tamaño planta: **700,000** habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativa A 2</th>
<th>Alternativa B 1</th>
<th>Alternativa C 2</th>
<th>Alternativa D Brasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salarios y jornales de personal</td>
<td>16,400</td>
<td>41,700</td>
<td>38,300</td>
<td>57,969</td>
</tr>
<tr>
<td>2. Costo de energía</td>
<td>9,810</td>
<td>69,156</td>
<td>86,245</td>
<td>207,031</td>
</tr>
<tr>
<td>3. Costo de mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. De obra civil al 0.5%</td>
<td>9,979</td>
<td>20,869</td>
<td>17,795</td>
<td></td>
</tr>
<tr>
<td>b. De equipos al 2.0%</td>
<td>27,719</td>
<td>93,471</td>
<td>83,504</td>
<td></td>
</tr>
<tr>
<td>c. Total</td>
<td>37,698</td>
<td>114,340</td>
<td>101,299</td>
<td>94,923</td>
</tr>
<tr>
<td>4. Gastos administrativos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Productos químicos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Total operación y mantenimiento</td>
<td>63,908</td>
<td>225,196</td>
<td>225,844</td>
<td>359,650</td>
</tr>
<tr>
<td>7. Costo total por habitante</td>
<td>0.091</td>
<td>0.322</td>
<td>0.323</td>
<td>0.514</td>
</tr>
</tbody>
</table>

* No incluidos.
Anexo 15

COSTO TOTAL DE OPERACIÓN Y MANTENIMIENTO PARA PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES (US$/AÑO)

Tamaño planta: 1'050,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Alternativa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A2</td>
</tr>
<tr>
<td>1. Salarios y jornales de personal</td>
<td>22,800</td>
</tr>
<tr>
<td>2. Costo de energía</td>
<td>17,466</td>
</tr>
<tr>
<td>3. Costo de mantenimiento</td>
<td></td>
</tr>
<tr>
<td>a. De obra civil al 0.5%</td>
<td>14,957</td>
</tr>
<tr>
<td>b. De equipos al 2.0%</td>
<td>41,000</td>
</tr>
<tr>
<td>c. Total</td>
<td>55,957</td>
</tr>
<tr>
<td>4. Gastos administrativos*</td>
<td></td>
</tr>
<tr>
<td>5. Productos químicos*</td>
<td></td>
</tr>
<tr>
<td>6. Total operación y mantenimiento</td>
<td>96,223</td>
</tr>
<tr>
<td>7. Costo total por habitante</td>
<td>0.092</td>
</tr>
</tbody>
</table>

* No incluidos.
Anexo 16

COSTO TOTAL DE OPERACION Y MANTENIMIENTO PARA PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES (US$/AÑO)

Tamaño planta: 1'400,000 habitantes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>A 2</th>
<th>B 1</th>
<th>B 2</th>
<th>B2 Brasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salarios y jornales de personal</td>
<td>24,200</td>
<td>53,700</td>
<td>51,000</td>
<td>74,769</td>
</tr>
<tr>
<td>2. Costo de energía</td>
<td>19,447</td>
<td>154,471</td>
<td>197,175</td>
<td>467,293</td>
</tr>
<tr>
<td>3. Costo de mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. De obra civil al 0.5%</td>
<td>19,922</td>
<td>41,701</td>
<td>35,553</td>
<td></td>
</tr>
<tr>
<td>b. De equipos al 2.0%</td>
<td>55,352</td>
<td>177,626</td>
<td>159,853</td>
<td></td>
</tr>
<tr>
<td>c. Total</td>
<td>75,247</td>
<td>219,327</td>
<td>195,406</td>
<td>177,538</td>
</tr>
<tr>
<td>4. Costos administrativos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Productos químicos*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Total operación y mantenimiento</td>
<td>118,894</td>
<td>427,498</td>
<td>443,581</td>
<td>719,600</td>
</tr>
<tr>
<td>7. Costo total por habitante</td>
<td>0,085</td>
<td>0,305</td>
<td>0,317</td>
<td>0,514</td>
</tr>
</tbody>
</table>

* No incluidos.
Anexo 17

CALCULO DE COSTOS ANUALES PARA PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES

Alternativa: TRATAMIENTO PRIMARIO CON DIGESTION ANAEROBICA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tamaño de planta, habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350,000</td>
</tr>
<tr>
<td>A. Costos anuales</td>
<td></td>
</tr>
<tr>
<td>1. Costo global de construcción, US$</td>
<td>2'614,680</td>
</tr>
<tr>
<td>2. Costos financieros, préstamo al 10% en 20 años, US$/año</td>
<td>261,468</td>
</tr>
<tr>
<td>4. Costo anual total, US$/año</td>
<td>301,455</td>
</tr>
</tbody>
</table>

B. Costo por masa de DBO removido

<table>
<thead>
<tr>
<th>Descripción</th>
<th>18,750</th>
<th>37,500</th>
<th>56,250</th>
<th>75,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Carga de DBO, kg/día</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Remoción de DBO al 30%, kg/día</td>
<td>5,625</td>
<td>11,250</td>
<td>16,875</td>
<td>22,500</td>
</tr>
<tr>
<td>ton/año</td>
<td>2,053</td>
<td>4,106</td>
<td>6,159</td>
<td>8,212</td>
</tr>
<tr>
<td>3. Costo total</td>
<td>146.8</td>
<td>132.11</td>
<td>128.42</td>
<td>124.54</td>
</tr>
<tr>
<td>ton DBO removido</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US$</td>
<td>6.67</td>
<td>6.00</td>
<td>5.84</td>
<td>5.66</td>
</tr>
<tr>
<td>100 lb DBO removido</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 18
CALCULO DE COSTOS ANUALES PARA PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES

Alternativa: LODOS ACTIVADOS CONVENCIONAL

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tamaño de planta, habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350,000</td>
</tr>
<tr>
<td>A. Costos anuales</td>
<td></td>
</tr>
<tr>
<td>2. Costos financieros, préstamo al 10% en 20 años, US$/año</td>
<td>633,602</td>
</tr>
<tr>
<td>4. Costo anual total, US$/año</td>
<td>777,693</td>
</tr>
<tr>
<td>B. Costo por masa de DBO removido</td>
<td></td>
</tr>
<tr>
<td>1. Carga de DBO, kg/día</td>
<td>18,750</td>
</tr>
<tr>
<td>2. Remoción de DBO al 30%, kg/día</td>
<td>17,437</td>
</tr>
<tr>
<td>(ton/año)</td>
<td>6,364</td>
</tr>
<tr>
<td>3. Costo total US$/ton DBO removido</td>
<td>121.62</td>
</tr>
<tr>
<td>4. Costo total US$/100 lb DBO removido</td>
<td>5.53</td>
</tr>
</tbody>
</table>
Anexo 19

Cálculo de costos anuales para plantas de tratamiento de aguas residuales

Alternativa: AERACION EXTENDIDA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tamaño de planta, habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350,000</td>
</tr>
</tbody>
</table>

A. Costos anuales

1. **Costo global de construcción, US$**
 - 5'615,180
 - 10'379,252
 - 14'939,760
 - 19'558,800

2. **Costos financieros, préstamo al 10% en 20 años, US$/año**
 - 561,518
 - 1'037,925
 - 1'493,976
 - 1'955,880

3. **Operación y mantenimiento, US$/año**
 - 146,017
 - 225,844
 - 338,245
 - 443,581

4. **Costo anual total, US$/año**
 - 707,535
 - 1'263,769
 - 1'832,222
 - 2'399,461

B. Costo por masa de DBO removido

1. **Carga de DBO, kg/día**
 - 18,750
 - 37,500
 - 56,250
 - 75,000

2. **Remoción de DBO al 30%, kg/día**
 - 18,000
 - 36,000
 - 54,000
 - 72,000

 ton/año
 - 6,570
 - 13,140
 - 19,710
 - 26,280

3. **Costo total en US$/ton DBO removido**
 - 107.69
 - 96.18
 - 92.96
 - 91.30

4. **Costo en US$/100 lb DBO removido**
 - 4.89
 - 4.37
 - 4.22
 - 4.15