ESQUEMAS DE LOS EQUIPOS DESARROLLADOS
POR EL GRUPO DE APOYO AL SECTOR RURAL
PARA SER IMPULSADOS POR ENERGÍAS NO CONVENCIONALES

- PARÁMETROS BÁSICOS
- PRINCIPIO DE FUNCIONAMIENTO
- CAPACIDAD

Ing. David Chávez Muñoz

Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH
PROBLEMAS RELACIONADOS CON LA ENERGÍA EN EL SECTOR RURAL

1. Bombeo de agua para:
 - Consumo Humano Directo
 - Limpieza e Higiene
 - Riego de Cultivos
 - Cria de Animales

2. Generación de Electricidad para:
 - alumbrado y Comunicaciones
 - Actividades Productivas y Servicios

3. Energía Térmica para:
 - Preparación de Alimentos
 - Calentación
 - Actividades Productivas

PERSPECTIVAS DESDE LAS ENERGIAS NO CONVENCIONALES

METODOLOGÍA SEGUIDA EN EL GRUPO BASADA EN SOLUCIONES CON TECNOLOGÍA APROPIADA

<table>
<thead>
<tr>
<th>SECTOR RURAL: NECESIDADES</th>
<th>SECTOR RURAL: RECURSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOMBEO</td>
<td>ENERGÍA HIDRAULICA</td>
</tr>
<tr>
<td>ELECTRICIDAD</td>
<td>ENERGÍA EÓLICA</td>
</tr>
<tr>
<td>CALOR</td>
<td>ENERGÍA SOLAR</td>
</tr>
</tbody>
</table>

GRUPO
CASOS TÍPICOS DE PROBLEMAS DE BOMBEO

1. AGUA DETENIDA DENTRO DE UN POZO, LAGUNA O DEPÓSITO

2. AGUA FLUYENDO SIN POSIBILIDADES DE OBTENER CAÍDA

3. AGUA EN MOVIMIENTO Y CON POSIBILIDADES DE OBTENER CAÍDA EN FORMA NATURAL O ARTIFICIAL

1.- AGUA DETENIDA

POZO

ESTANQUES

LAGUNA
2. - AGUA FLUYENDO SIN CAÍDA

RÍO EN UNA LLANURA
O CANAL

3. - AGUA EN MOVIMIENTO CON CAÍDA
CARACTERISTICAS DE LA BOMBA DE ARIETE

TAMAÑOS ESTANDARIZADOS: BAH-2, BAH-2.5, BAH-4, BAH-8, BAH-10 y BAH-20

ALTURAS DE BOMBEO h: un máximo de 300 m dependiendo de la altura de alimentación.

ALTURAS DE ALIMENTACIÓN H: 1m como mínimo y 30m como máximo

CAUDAL BOMBEADO q: es función de la relación h/H según:

\[q = \frac{N}{h} \]

donde N es el rendimiento (30% aprox)

como ejemplo: BAH-2 con h/H = 8 bombea 15 l/min
BAH-20 con h/H = 8 bombea 3000 l/min

\[\frac{h}{H} \]

\[30 \]

10 20 30 40 50 60

caudal 1/s
CARACTERISTICAS DE LA TURBOBOMBA

TAMANOS: se construye en función de cada instalación en particular.

ALTURA DE BOMBEO h: 50 m como máximo (bomba centrífuga)

ALTURA DE ALIMENTACION H: 2 m como mínimo y 15 m máx.

CAUDAL BOMBEADO q: dependiente de la relación (h/H)

\[q = \frac{Q \cdot (H-1)}{h} \times 550 \text{ (l/s)} \]

tiene posibilidades de generar electricidad al acoplarle un generador al eje de la turbina: RPM al rededor de 300

Ejemplo: si Q = 600 l/s, H = 11 m, h = 40 m se obtiene:
\[q = 62 \text{ l/s} \]
CARACTERISTICAS DE LA RIOBOMBA

TAMAÑOS ESTANDARIZADOS (BOMBAS): RB-2,5, RB-4, RB-6, RB-8
RB-12, RB-20

ALTURA DE BOMBEO h: 40 m como máximo

CAUDAL DE BOMBEO q: dependiente del tamaño de bomba

tamaño

<table>
<thead>
<tr>
<th>RB2,5</th>
<th>RB4</th>
<th>RB6</th>
<th>RB8</th>
<th>RB12</th>
<th>RB20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>1,2</td>
<td>2,0</td>
<td>3,5</td>
<td>5,0</td>
<td>8,0</td>
</tr>
</tbody>
</table>

POTENCIA QUE SE PUEDE OBTENER:
es función de cubo de la velocidad de circulación del agua

3

P = 0,25.A.(V)³ (kW)

donde V es la velocidad de circ. del río o canal, A es el área de las palas de la rueda.

VELOCIDAD MÍNIMA REQUERIDA: 0,7 m/s
CAUDAL MÍNIMO REQUERIDO EN EL RÍO O CANAL: 2000 l/s
CARACTERISTICAS DE LA BOMBA MANUAL

Existen muchos tipos de BOMBAS MANUALES. El GRUPO ha desarrollado investigaciones en dos de ellas:

BOMBA PARA POZOS PROFUNDOS: se trata de una bomba con accionamiento por cable, con cámaras de amortiguamiento y tubería de bombeo excéntrica al cable.
PROFUNDIDAD: máxima de bombeo 60 m.
CAUDAL: 1 l/s a 20 m, 0.5 l/s a 40 m y 0.15 l/s a 60 m
FUERZA EN LA PALANCA: 17 kg para 60m

BOMBA PARA POCA PROFUNDIDAD: se trata de una bomba con accionamiento por vástago rígido de acero, de muy bajo costo y sin cámaras de amortiguamiento.
PROFUNDIDAD: máxima de 10 m
CAUDAL: 4 l/s a 2 m, 1 l/s a 10 m
FUERZA EN LA PALANCA: 12 kg para 10m

Se ha llevado a través un proyecto la construcción de una "BURROBOMBA" que se trata de una bomba de pistón de pozos impulsada por tracción animal.
CARACTERISTICAS DE LA AEROBOMBA MCTB500

CAPTADOR EOLICO:
ROTOR multipala (12) de 6m de diámetro, 30 RPM y perfil aerodinámico y control direccional por veleta.
TORRE de 6m de altura mínima con tornamesa giratorio.
TRANSMISION con mecanismo de biela manivela

BOMBA:
De tipo reciprocante con cámaras de equilibrio. De carrera regulable (41/carreras).
CAPACIDAD MÁXIMA: 25 m de altura total de bombeo.

RENDIMIENTO:
dependiente de la velocidad del viento y la altura de bombeo

<table>
<thead>
<tr>
<th>VELOCIDAD</th>
<th>ALTURA</th>
<th>CAUDAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 m/s</td>
<td>6m</td>
<td>1,6 l/s</td>
</tr>
<tr>
<td>carrera</td>
<td>10m</td>
<td>1,2 l/s</td>
</tr>
<tr>
<td>mínima</td>
<td>15m</td>
<td>1,0 l/s</td>
</tr>
<tr>
<td></td>
<td>20m</td>
<td>0,6 l/s</td>
</tr>
<tr>
<td>8 m/s</td>
<td>6m</td>
<td>4,0 l/s</td>
</tr>
<tr>
<td>carrera</td>
<td>10m</td>
<td>3,6 l/s</td>
</tr>
<tr>
<td>máxima</td>
<td>15m</td>
<td>3,5 l/s</td>
</tr>
</tbody>
</table>
EL AEROGENERADOR WAIRA

CARACTERISTICAS DEL AEROGENERADOR WAIRA

ROTOR bipala de 3m de diámetro, hecho de fibra de vidrio y poliéster. Perfil NACA 4412.

TRANSMISION por fajas del rotor al generador relac. 1:5

GENERADOR síncrono con rectificación y regulación a 12/24 V DC incorporado.

TORRE de 6m de altura como mínimo, metálica.

INVERSOR que permite la conversión de DC 12/24V a AC 220V a una potencia de 1000 VA

BATERÍAS (2) de 70 A/hora para acumular la energía generada hasta que sea demandada.

POTENCIA DEL SISTEMA: dependiente del cubo de la velocidad de viento según: $P = 1.226 \cdot V^3$

POTENCIA EN W

<table>
<thead>
<tr>
<th>VELOCIDAD DEL VIENTO m/s</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA EN W</td>
<td>0</td>
<td>400</td>
<td>800</td>
<td>1200</td>
</tr>
</tbody>
</table>