Centro Panamericano de Ingeniería
Sanitaria y Ciencias del Ambiente (CEPIS)

Programa de Salud Ambiental

Organización Panamericana de la Salud
Oficina Sanitaria Panamericana, Oficina Regional de la
Organización Mundial de la Salud

OPERACION Y MANTENIMIENTO DE LAGUNAS

Ing. Ricardo Rojas Vargas
Oficial en Tratamiento de Aguas Residuales
y Disposición de Excretas

Noviembre 1990
OPERACION Y MANTENIMIENTO DE LAGUNAS

I. PURIFICACION DE LAS AGUAS RESIDUALES POR LAGUNAS DE ESTABILIZACION

a. Origen de las aguas residuales

Las aguas residuales recolectadas por el sistema de alcantarillado conducen los desechos de las viviendas, oficinas, instituciones, industrias, etc. A su vez al sistema de alcantarillado pueden llegar las aguas procedentes de la cocina, lavandería o baño (a excepción de los inodoros) el cual es conocido como "aguas grises". Cuando se integra el desecho del inodoro se conoce como desagüe doméstico. Ver Figura 1.

b. Recolección

El caudal de agua residual no siempre tiene un régimen regular durante el día. En el caso de sistemas separativos de alcantarillado, el caudal de agua residual desciende significativamente durante la noche y dependiendo del tamaño de la población servida, el máximo caudal puede alcanzar hasta tres veces el caudal medio diario.

Así mismo, cuando el sistema de alcantarillado se diseña para recolectar conjuntamente aguas residuales y aguas de lluvia, el sistema se conoce como combinado. En estos casos el aporte del agua de lluvia puede sobrepasar con amplitud el caudal promedio de agua residual conduciendo a un alto grado de disolución de esta agua residual.

c. Composición

Las aguas residuales, estén o no diluidas con aguas de lluvia contienen elementos contaminantes que al ser descargados al medio ambiente pueden causar riesgo a la salud del hombre.

Los principales contaminantes son:

- Materia orgánica de grado variable de biodegradabilidad
- Compuestos nitrogenados de origen orgánico o mineral
- Compuestos fosforados provenientes principalmente de los detergentes
Figura 1

A LA PLANTA DE TRATAMIENTO
Estos compuestos pueden estar disueltos o suspendidos en el medio líquido.

Adicionalmente se tiene la parte biológica conformada por bacterias, nematodes y protozoarios (saprofitos y patógeno).

En los cuadros 1, 2 y 3 se indica el cambio de la calidad del agua de bebida, la composición típica de las aguas residuales y el aporte per cápita de diferentes constituyentes.

d. Evaluación de la calidad

El diseño y manejo de las plantas de tratamiento de aguas residuales requiere de una evaluación de la calidad de las aguas residuales. Para este propósito, algunas pruebas estándares están disponibles.

SST Sólidos suspendidos totales.- Partículas orgánicas o inorgánicas fácilmente separables del líquido por filtración o centrífugación.

DQO Demanda química de oxígeno.- La cantidad de oxígeno necesario para la oxidación química (destrucción) de la materia orgánica. Esta prueba proporciona un medio indirecto de la concentración de materia orgánica en el agua residual.

DBO₅ Demanda bioquímica de oxígeno en cinco días.- Prueba biológica que permite determinar la cantidad de materia orgánica fácilmente biodegradable. La DBO₅ corresponde a la cantidad de oxígeno necesario en un tiempo determinado, para oxidar biológicamente la materia orgánica. La relación DQO/DBO₅ proporciona una indicación de la biodegradabilidad de las aguas residuales.

N-P Contenido de nitrógeno y fósforo en diferentes formas químicas

Contenido Indica que el medio ambiente está contaminado (estreptococos, coliforme fecal, salmonellas, ascaris, trichuris, amebas, etc). Su presencia permite evaluar el peligro a la salud debido a la contaminación biológica. En el cuadro 4 se ilustra la cantidad de organismos excretados en las heces y la dosis infectiva para causar enfermedad.
Cuadro 1

VARIACION DE LA CALIDAD DEL AGUA POTABLE POR EL USO MUNICIPAL

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Agua del caño Promedio (mg/l)</th>
<th>Efluente de Alcantarilla Promedio (mg/l)</th>
<th>Incremento (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQO sin filtración</td>
<td>6.0</td>
<td>265</td>
<td>259</td>
</tr>
<tr>
<td>DQO con filtración</td>
<td>101</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>DQO con filtración, corregido para Cl⁻</td>
<td>2.0</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>Detergentes aniónicos</td>
<td>0.02</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Oxhidrilo aromático (ácido tánico)</td>
<td>0.05</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Carbonhidratos (glucosa)</td>
<td>0.05</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Azúcares reductores (glucosa)</td>
<td>0.005</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Nitrógeno orgánico (N)</td>
<td>0.07</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Nitrato (N)</td>
<td>0.67</td>
<td>4.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Nitrito (N)</td>
<td>0.03</td>
<td>0.33</td>
<td>0.3</td>
</tr>
<tr>
<td>Amoníaco (N)</td>
<td>0.02</td>
<td>16.1</td>
<td>16.1</td>
</tr>
<tr>
<td>Nitrógeno total (N)</td>
<td></td>
<td></td>
<td>22.0</td>
</tr>
<tr>
<td>Alcalinidad total (CaCO₃)</td>
<td>141</td>
<td>263</td>
<td>122</td>
</tr>
<tr>
<td>Calcio (Ca⁺⁺)</td>
<td>52</td>
<td>75</td>
<td>23</td>
</tr>
<tr>
<td>Magnesio (Mg⁺⁺)</td>
<td>15</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Potasio (K⁺)</td>
<td>1.9</td>
<td>11.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Sodio (Na⁺⁺)</td>
<td>13.5</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>Fosfato (PO₄³⁻)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.043</td>
<td>24.3</td>
<td>24.3</td>
</tr>
<tr>
<td>Ortofosfato</td>
<td>0.011</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Sulfato (SO₄²⁻)</td>
<td>68</td>
<td>101</td>
<td>33</td>
</tr>
<tr>
<td>Cloruro (Cl⁻)</td>
<td>15.1</td>
<td>70.9</td>
<td>56</td>
</tr>
<tr>
<td>Residuo 105°C</td>
<td>256</td>
<td>547</td>
<td>291</td>
</tr>
<tr>
<td>Pérdida por ignición</td>
<td>58</td>
<td>127</td>
<td>69</td>
</tr>
<tr>
<td>pH*</td>
<td>8.3</td>
<td>7.5</td>
<td>-0.8</td>
</tr>
<tr>
<td>Conductancia específica wohm/cm²</td>
<td>422</td>
<td>916</td>
<td>494</td>
</tr>
</tbody>
</table>

* Las unidades para pH y para conductancia específica no están expresadas en mg/l.
Cuadro No. 2
COMPOSICION TIPICA DE TRES CLASES DE AGUAS RESIDUALES DOMESTICAS

<table>
<thead>
<tr>
<th>Constituyente</th>
<th>Concentración, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alta</td>
</tr>
<tr>
<td>Sólidos totales</td>
<td>1200</td>
</tr>
<tr>
<td>disueltos totales</td>
<td>850</td>
</tr>
<tr>
<td>fijos</td>
<td>525</td>
</tr>
<tr>
<td>volátiles</td>
<td>325</td>
</tr>
<tr>
<td>en suspensión totales</td>
<td>350</td>
</tr>
<tr>
<td>fijos</td>
<td>75</td>
</tr>
<tr>
<td>volátiles</td>
<td>275</td>
</tr>
<tr>
<td>Sólidos sedimentables, ml/L-h</td>
<td>20</td>
</tr>
<tr>
<td>DBO (5 días, 20°C)</td>
<td>300</td>
</tr>
<tr>
<td>DQO</td>
<td>570</td>
</tr>
<tr>
<td>Nitrógeno total (como N)</td>
<td>85</td>
</tr>
<tr>
<td>orgánico (como N)</td>
<td>35</td>
</tr>
<tr>
<td>amoniacoal (como N)</td>
<td>50</td>
</tr>
<tr>
<td>Fósforo total (como P)</td>
<td>20</td>
</tr>
<tr>
<td>Cloruros (como Cl)</td>
<td>100</td>
</tr>
<tr>
<td>Alcalinidad (como CaCO₃)</td>
<td>200</td>
</tr>
<tr>
<td>Grasas</td>
<td>150</td>
</tr>
<tr>
<td>Calcio (como Ca)</td>
<td>110**</td>
</tr>
<tr>
<td>Magnesio (como Mg)</td>
<td>10**</td>
</tr>
<tr>
<td>Sodio (como Na)</td>
<td>100**</td>
</tr>
</tbody>
</table>

* agua blanda
** agua dura

e. **Criterios de calidad**

El Grupo Científico de la OMS en la reunión de Adelboden recomienda las directrices que aparecen en el cuadro 5.

f. **Biomasa presente en las lagunas**

Las lagunas de estabilización son colonizadas naturalmente por una gran variedad de organismos, la mayor parte de ellos invisibles al ojo humano. Los principales grupos encontrados son:
Cuadro No. 3

APORTE PER CAPITA DE DIFERENTES CONSTITUYENTES
gr/hab.día

<table>
<thead>
<tr>
<th></th>
<th>Mineral</th>
<th>Orgánico</th>
<th>Total</th>
<th>DBO₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sólidos suspendidos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) sedimentables</td>
<td>15</td>
<td>39</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>b) no sedimentables</td>
<td>30</td>
<td>26</td>
<td>36</td>
</tr>
<tr>
<td>2.</td>
<td>Sólidos disueltos</td>
<td>80</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>3.</td>
<td>Sólidos totales</td>
<td>105</td>
<td>145</td>
<td>250</td>
</tr>
<tr>
<td>4.</td>
<td>Nitrógeno amoniacal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Nitrógeno total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Fósforo total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Detergente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Cloruros</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Coliformes fecales*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Número de gérmenes por persona
Cuadro No. 4

EXCRECION DE MICRO-ORGANISMOS PATOGENOS Y DOSIS INFECTIVA

<table>
<thead>
<tr>
<th>Organismos</th>
<th>No./gramo de heces</th>
<th>Supervivencia</th>
<th>Dosis infectiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter spp</td>
<td>10^7</td>
<td>1 semana</td>
<td>$1 - 10^6$</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>10^5</td>
<td>1 semana</td>
<td>$1 - 10^6$</td>
</tr>
<tr>
<td>Entamoeba histolítica</td>
<td>10^5</td>
<td>3 semanas</td>
<td></td>
</tr>
<tr>
<td>Shigella spp</td>
<td>10^7</td>
<td>1 mes</td>
<td>$1 - 10^6$</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>10^7</td>
<td>1 mes +</td>
<td>$10^2 - 10^6$</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>10^8</td>
<td>2 meses</td>
<td>$10^2 - 10^6$</td>
</tr>
<tr>
<td>Salmonella spp</td>
<td>10^8</td>
<td>3 meses</td>
<td>$10^4 - 10^6$</td>
</tr>
<tr>
<td>Escherichia coli (pat)</td>
<td>10^8</td>
<td>3 meses</td>
<td>$10^3 - 10^8$</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>10^7</td>
<td>3 meses</td>
<td>$1 - 10^3$</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>10^6</td>
<td>3 meses</td>
<td>$1 - 10^3$</td>
</tr>
<tr>
<td>Ancylostoma duodenale</td>
<td>10^2</td>
<td>3 meses</td>
<td>$1 - 10$</td>
</tr>
<tr>
<td>Trichuris trichura</td>
<td>10^3</td>
<td>9 meses</td>
<td>$1 - 10$</td>
</tr>
<tr>
<td>Taenia saginata</td>
<td>10^4</td>
<td>9 meses</td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>10^4</td>
<td>12 meses</td>
<td>$1 - 10$</td>
</tr>
</tbody>
</table>
Cuadro No. 5
DIRECTIVAS RECOMENDADAS SOBRE LA CALIDAD MICROBIOLOGICA DE LAS AGUAS RESIDUALES EMPLEADAS EN AGRICULTURA

<table>
<thead>
<tr>
<th>Categoría de aprovechamiento</th>
<th>Grupo de enfermedades</th>
<th>Nemátodos intestinales</th>
<th>Coliformes fecales</th>
<th>Tratamiento de aguas residuales necesarios para lograr la microbiológica exigida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Riego de cultivos</td>
<td>Trabajadores < 1</td>
<td>< 1000 <sup>d</sup></td>
<td>Serie de estanques de estabilización que permiten lograr la calidad microbiológica indicada, o equivalente</td>
</tr>
<tr>
<td></td>
<td>que comúnmente se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>consumen crueros,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>campos de deporte,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>parques públicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Riego de cultivos de</td>
<td>Trabajadores < 1</td>
<td>No se recomienda</td>
<td>Retención en estanques de estabilización por 8 a 10 días o equivalente de helminos y coliformes fecales</td>
</tr>
<tr>
<td></td>
<td>cereales, industriales y forrajes, praderas y árboles</td>
<td></td>
<td>ninguna norma</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Riego localizado de cultivos en la categoría B cuando no los trabajadores ni el público están expuestos</td>
<td>No es aplicable</td>
<td>No es aplicable</td>
<td>Tratamiento previo según lo exija la tecnología de riego, pero no menos que sedimentación primaria</td>
</tr>
</tbody>
</table>

a En casos específicos, se deberían tener en cuenta los factores epidemiológicos, socioculturales y ambientales de cada lugar y modificar las directrices de acuerdo con ello.

b Especies *Ascaris* y *Trichuris* y anquilostomas.

c Durante el periodo de riego.

d Convien establecer una directriz más estricta (< 200 coliformes fecales por 100 ml) para prados públicos, como los de los hoteles, con los que el público puede entrar en contacto directo.

e En el caso de los árboles frutales, el riego debe cesar dos semanas antes de cosechar la fruta y ésta no se debe recoger del suelo. No es conveniente regar por aspersión.
Bacterias: Estos son microorganismos que pueden asimilar la mayor parte de la materia orgánica. Ellos eliminan productos de descomposición bajo la forma de dióxido de carbono, metano y material soluble dentro de su medio ambiente. Existen dos tipos de bacterias:

Aquellas que pueden desarrollarse en ausencia de oxígeno (Bacterias anaeróbicas)

Aquellas que necesitan oxígeno para vivir (Bacterias aeróbicas)

En lagunas, las primeras son encontradas en el fondo y en el lodo, mientras que las aeróbicas predominan en las capas superficiales de agua. El oxígeno necesario para la respiración proviene del intercambio entre el aire y el agua (mezcla inducida por el viento) pero principalmente proviene de la actividad fotosintética de las algas en suspensión.

Algas: Estas son plantas microscópicas y como toda planta contiene clorofila. A ellas se debe el color verde de las lagunas. La clorofila permite el uso de la luz solar como fuente de energía y a este proceso se le conoce como fotosíntesis. Las algas durante la luz del día toman el dióxido de carbono y las sales minerales del agua para producir oxígeno y liberarlo dentro de la laguna.

De esta manera, las algas son las principales productoras de oxígeno en las lagunas y esta producción tiene lugar en la capa superficial del agua (20 a 50 cm).

Zooplakton: Este término designa a todos los animales pequeños o microscópicos que viven en las lagunas de estabilización. Ellos son por ejemplo, microcrustáceos tales como la daphnia que se alimenta por filtración de los sólidos suspendidos. Ejemplo materia orgánica, bacterias y algas. Cuando ellos se desarrollan en estaciones cálidas y en lagunas de baja carga, su actividad puede ser muy intensa y contribuyen particularmente a clarificar el agua.

Macrophyta: Este término se aplica a todas las plantas acuáticas presentes en las lagunas y se definen dos tipos:

Plantas radiculares, con raíces enterradas. Esencialmente sirve como soporte de bacterias, algas y zooplakton. Esto contribuye a diversificar y balancear la actividad biológica.
Plantas flotantes, tales como la lema y el jacinto acuático que coloniza la superficie de las lagunas. Ellos juegan un papel muy importante en el proceso de purificación asimilando el nitrógeno y el fósforo en particular. Pero su excesiva proliferación puede alterar el correcto funcionamiento de la planta de tratamiento.

g. Mecanismos de purificación

La carga orgánica o contaminante es descompuesta por varios medios, los mismos que están íntimamente interrelacionados y tienen efectos complementarios.

Sales minerales

Son asimilados por las algas y también pueden ser absorbidos por los microorganismos en el zooplakton.

Materia orgánica

Disuelta en el agua y es descompuesta por las bacterias. Las sales minerales producidas por esta descomposición contribuyen al crecimiento de las algas. Las bacterias a su vez sirven de alimento para el zooplakton.

Sólidos suspendidos

Estos tienden a sedimentar en el fondo de las lagunas. Una fracción es absorbida directamente por el zooplakton. Los sólidos suspendidos presentes en los efluentes, no son de la misma naturaleza que los encontrados en las aguas residuales. Están representados principalmente por desechos, bacterias, algas y zooplakton.

La carga orgánica extraída de los afluentes, finalmente es entrampada o retenida en el sedimento a través de la sedimentación de los sólidos suspendidos. El sedimento es biológicamente activo y el proceso de estabilización continúa a este nivel. Ver Figuras 2 y 3.

II. OPERACION

a. Generalidades

La característica rústica de las lagunas permite que funcionen en forma autónoma. Considerando de que no existen accesorios electromecánicos para este tipo de tratamiento, no existe razón para tener temor a que funcione mal y que pueda paralizarse el proceso de purificación.
Figura 2

DIAGRAMA DEL MODELO DINAMICO DE LAGUNAS FACULTATIVAS

(ADAPTADO DE FRITZ ET AL)
Sin embargo, esto no es motivo para pensar que las lagunas de estabilización puedan funcionar sin la intervención del hombre. Es absolutamente necesario ejecutar tareas regulares de mantenimiento para asegurar, no solamente el adecuado flujo de aguas residuales hacia cada una de las lagunas, sino también la deseada purificación y el fácil acceso a las lagunas.

Al efecto es necesario un número determinado de acciones para el adecuado mantenimiento de las lagunas y ello no requiere de personal técnico especializado o de empleo de equipo complicado.

b. Operación del sistema de tratamiento

Se entiende por operación del sistema, a todas las actividades diarias destinadas a mantener en adecuado funcionamiento el sistema de tratamiento y consiste básicamente en una inspección de la planta de tratamiento y en la medición de parámetros indicativos de la eficiencia del sistema.

La operación del sistema de tratamiento se inicia con la forma correcta del prearranque de la laguna, hasta su estabilización, continuando luego con la operación propiamente dicha y el mantenimiento adecuado de manera permanente y sostenida. De esta forma se logra el buen funcionamiento de las lagunas y se evitan los gastos costosos de reparaciones.

c. Llenado de las lagunas

Previo a la etapa de operación continua de la planta de tratamiento, existe un período de arranque de las lagunas, durante el cual se deben considerar las precauciones siguientes:

- Eliminación de vegetación del fondo y taludes interiores.
- Llenado en forma rápida de las lagunas.

El arranque de un sistema de lagunas puede presentar un número determinado de problemas a causa de:

- Bajo caudal afluente por el escaso número de conexiones domiciliarias
- Baja densidad microbiológica en las aguas de las lagunas de tratamiento
- Baja concentración orgánica de las aguas residuales debido a la alta proporción de infiltración de agua subterránea

Arranque de las Lagunas. Evidentemente, una laguna no aceptará inmediatamente la carga orgánica total para la que fue diseñada, y por este motivo es necesario un período de ajuste, equivalente a varios periodos de retención. El tiempo tomado para alcanzar el equilibrio o aclimatación dependerá del tipo de agua residual, tipo de laguna y velocidad de descomposición de la materia orgánica.
Lagunas anaeróbicas

Llenar inicialmente con agua residual cruda y de ser posible inocular con lodo digerido para ayudar en el rápido establecimiento de bacterias responsables de la degradación de la materia orgánica. La laguna debe ser dejada por algunos días para permitir el desarrollo de las bacterias acetogénicas y metanogénicas. Si no es posible ejecutar la inoculación, la carga de la laguna deberá ejecutarse progresivamente, cuidando que no se acidifique.

Las bacterias formadoras de ácido (acetogenésis) se desarrollan más rápidamente que las metanogénicas las mismas que son inhibidas a pH < 7.0. La carga orgánica debe ser mantenida lo suficientemente alta como para prevenir la presencia de oxígeno disuelto en la laguna, ya que ésta también inhibe el crecimiento de ambos grupos de bacterias. El pH debe ser mantenido por encima de 7 mediante la adición de cal cuando existe predominio de la fase ácida.

Laguna facultativa

La laguna facultativa no puede, ni debe recibir inmediatamente su carga orgánica o hidráulica total. Por principio, el crecimiento de las algas no se establece tan rápidamente como la población bacteriana, por lo cual debe esperarse un tiempo determinado hasta alcanzar su estabilización.

Por otra parte existen problemas iniciales derivados por la alta permeabilidad de las lagunas y el bajo caudal afluente que muchas veces dificulta el llenado de los reactores.

Normalmente las lagunas se llenan gradualmente con agua residual, pero idealmente es mejor llenarlas con agua limpia y lodos activados antes de la introducción del agua residual.

Cuando no existe agua limpia para llenar la laguna facultativa previo a la adición de agua residual, la laguna puede ser llenada con agua residual cruda y mantenida por 20 días o más para el desarrollo de la población bacteriana y de algas. En esta etapa sólo debe compensarse con agua residual las pérdidas de agua causada por la evaporación e infiltración.

Así mismo, cuando la infiltración de agua es elevada, o el tiempo de retención de diseño de la laguna es mayor a 10 días o sólo una parte del número total de viviendas está conectado al sistema de alcantarillado, se puede optar por dividir, temporalmente la laguna en partes, construyendo uno o dos diques a través del ancho de la laguna, dividiéndola a la mitad o en tercios. Esto permitirá que el fondo de la laguna selle más rápidamente y evitará el crecimiento de plantas acuáticas.
Los diques se hacen de tierra y no más altos de 0.5 m. En estas condiciones, se permite el ingreso de agua residual en la laguna y los sólidos sedimentables sellarán gradualmente el fondo de la primera sección. Esta sección se llenará en pocos días y el agua residual derramará sobre el dique y empezará a sellar el resto de la laguna. Dependiendo del tamaño de la laguna y del caudal, la laguna se llenará prontamente hasta alcanzar su profundidad de funcionamiento.

En el caso que se tenga más de una laguna, se prosigue en la forma siguiente:

1. Después de llenar la primera laguna, cerrar la alimentación a ella y desviar el agua residual a la segunda laguna, llenándola por secciones en forma similar a lo descrito anteriormente.

2. Permitir que la primera laguna logre la aclimatación en un tiempo aproximado de 10 ó 20 días. El indicio de aclimatación se tiene cuando la laguna se torna en color verdoso.

3. Permitir la aclimatación de la segunda laguna, desviando el agua residual a la primera laguna ya aclimatada, propiciando la descarga del agua tratada. Si las lagunas están conectadas en serie, el agua tratada pasará de la primera laguna a la segunda y la descarga se hará por la salida de la segunda. Si las lagunas están conectadas en paralelo, cuando ya estén aclimatadas, permitir que el agua residual ingrese a ambas lagunas y que descargue por cada una el agua tratada.

El otro método consiste en llenar inicialmente la laguna primaria con agua limpia (ríos, lagos o pozos). A continuación, el agua residual es introducida lentamente como para permitir el desarrollo de las bacterias y algas (toma aproximadamente 10 - 20 días). La máxima carga debe ser alcanzada después de un mes de funcionamiento.

Donde la laguna primaria es anaeróbica y abastece a una laguna facultativa, el llenado de esta última puede realizarse directamente sin necesidad de inoculación, pero este proceso debe efectuarse lentamente. La inoculación de la laguna facultativa con algas no es generalmente necesario.

Laguna de maduración

Las lagunas de maduración se llenan directamente con el agua de la laguna facultativa no siendo necesario el llenado previo con agua limpia.
Mantenimiento de las unidades de pre-tratamiento

La limpieza de éstas debe hacerse todos los días, disponiendo luego los residuos en forma adecuada para evitar malos olores. La limpieza diaria de críbas puede hacerse con la ayuda de un rastrillo o trinche comunes, pero mejores resultados se obtienen con una herramienta especialmente diseñada para estos trabajos. Es necesario limpiar diariamente los canales de crudo con la ayuda de una pala, especialmente en las proximidades de las estructuras de medición, poniendo cuidado en remover los sedimentos acumulados alrededor del agujero de conexión entre el pozo de medición y el canal. La presencia de sedimentos en las proximidades de las estructuras de medición causan lecturas erráticas de caudal.

Si el sistema de lagunas no tiene desarenador y los canales son de baja pendiente, se producirá el arenamiento de los mismos. El material se acumula frecuentemente en el fondo de los canales durante los períodos de lluvias o flujos mínimos.

Los vertederos también requieren de limpieza periódica para asegurar datos confiables de los caudales que se miden en ellos. Esta limpieza se efectúa eliminando la materia que se adhiere a éstos con una escobilla metálica.

Los residuos removidos de las unidades de pre-tratamiento deben ser escurridos y remitidos al relleno sanitario o en su defecto incinerado o enterrado en los alrededores de la planta.

Mantenimiento de los alrededores

Mantenimiento de rutas de acceso

Es importante mantener transitables los caminos que conectan la zona de tratamiento con la ciudad y los caminos de acceso a las lagunas. Ello facilita las operaciones de mantenimiento, muestreos y demás trabajos que requieren hacerse en la zona. Además de su propósito principal de mantener almacenado el líquido, los diques específicamente la coronación facilita el acceso a las lagunas y el desplazamiento del personal y/o vehículos de mantenimiento.

Mantenimiento de los diques

Los diques de las lagunas requieren de atención continua. Los taludes interiores deben tener una pendiente que esté de acuerdo con el tipo de material empleado, grado de compactación y recubrimiento. La erosión de los diques sucede por la acción del viento y las lluvias. El viento produce olas que erosionan el talud interior del dique y las lluvias producen canales. Una idea para controlar estos efectos es la
de promover el crecimiento de pasto en los diques, pero esta alternativa trae consigo la proliferación de mosquitos. Otra alternativa más costosa es la de revestir el talud interior con una franja de 30 cm por encima y debajo del nivel promedio de cada laguna con piedras planas y cemento.

Control de malezas

Dos tipos de maleza presentan problemas en las lagunas de estabilización: la maleza acuática y la terrestre. La maleza acuática, que crece con raíces en el fondo de la laguna, puede presentar problemas de crecimiento exagerado, proliferación de insectos, malos olores y alta infiltración. Estas malezas proliferan generalmente debido a la escasa profundidad de la laguna o a la falta de carga hidráulica en la misma. Yáñez (1975) indica que, aunque no hay un criterio definido, profundidades menores de 1.5 m resultan en problemas de crecimiento de malezas acuáticas y evitan la fermentación del metano, favoreciendo así la producción y acumulación de ácidos, resultando en malos olores. Por su parte Hess (1981) indica que estos crecimientos ocurren cuando la profundidad está por debajo de los 60 cm.

La maleza terrestre que crece en los bordes de las lagunas presenta también problemas y facilita la proliferación de mosquitos, cuando la vegetación se desarrolla en tal forma que provee suficiente sombra en el agua que sirve de abrigo a las larvas. El desarrollo de estas larvas, por otro lado, puede ser regulado por una variedad de controladores biológicos (ver Cuadro 6).

Control de materias flotantes

Las materias flotantes perjudican al tratamiento debido a que reducen el área efectiva de las lagunas, evitando la libre influencia de la energía solar en las capas superficiales e interponiéndose también a la acción oxigenadora del viento. Hay de dos tipos: lodos flotantes, que generalmente aparecen en la superficie de lagunas primarias, y las natas vegetales, que proliferan en lagunas de acabado. Los lodos flotantes existen principalmente debido a un ineficiente cribaje de las aguas residuales crudas antes de su ingreso a las lagunas primarias, aunque también se presentan como producto del burbujeo de gases formados en el fondo de las unidades en épocas de estratificación térmica. Es necesario eliminar periódicamente los lodos flotantes que aparecen en las primarias con la ayuda de desnatadores. Por otro lado, las natas vegetales se desarrollan en lagunas de alta síntesis y su remoción puede efectuarse de la misma manera que los lodos flotantes o en su defecto, si las condiciones lo permiten, pueden emplearse controladores biológicos (ver Cuadro 6).
Cuadro No. 6
CONTROLADORES BIOLOGICOS QUE PODRIAN UTILIZARSE
EN LAGUNAS DE ESTABILIZACION

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Control</th>
<th>Observaciones</th>
</tr>
</thead>
</table>
| Pez Gambusia¹
(*Gambusia affinis*) | Algas, insectos acuáticos y terrestres, rotíferos y crustáceos | Resisten temperaturas hasta 35º, bajos niveles de O.D. y altas salinidades |
| Pup-Fish¹
(*Cyprinodon mascularius*) | Insectos y larvas | Resisten temperaturas de 0-46ºC y altas salinidades |
| Carpa forrajera²
(*Ctenopharygodon idella*) | Lemna y otras plantas acuáticas | Resisten temperaturas de 5-34ºC, bajas concentraciones de O.D. y fluctuaciones de pH |
| Tilapia³
(*Tilapia mossambica y Tilapia rendalli*) | Maleza. Natas vegetales | Resisten temperaturas mayores de 15ºC, bajas concentraciones de O.D. y fluctuaciones de pH |

¹ Agricultura de las Américas. 1980
² Hossos y Galecio. 1978
³ Henschkat. 1979
f. Seguridad de los trabajadores

El personal debe estar informado de los peligros relativos al trabajo y de la necesidad del aseo personal luego de manipular sus instrumentos de trabajo. Así mismo debe recomendárseles el evitar acciones que pudieran causarles contaminación. Es también importante mantener un botiquín de primeros auxilios, conteniendo un frasco con una solución de alcohol yodado para la desinfección diaria de las manos y de posibles heridas. Es recomendable la vacunación de los trabajadores contra la tifoidea y el tétanos, así como la evaluación periódica de la presencia de parásitos en las heces.

g. Trabajos hidráulicos

Calibración de estructuras hidráulicas

Es necesario calibrar las estructuras de medición del sistema de tratamiento, ya que los datos reales rara vez coinciden con las especificaciones teóricas. Una calibración es necesaria al poner en funcionamiento cualquier estructura hidráulica nueva o modificada, para así obtener datos precisos de los caudales que pasan por ellos.

Existen muchos métodos de calibración, los cuales utilizan diversos equipos y trazadores. Se expone aquí el procedimiento de calibración con el colorante fluorescente Rhodamina WT. Este colorante está siendo utilizado con preferencia debido a sus características no biodegradables y no absorbentes en sólidos.

En líneas generales el método consiste en inyectar al curso de agua una solución concentrada del trazador cuya dilución está en función del caudal. Las ecuaciones utilizadas para computar el caudal de agua está basado en el principio de continuidad del trazador (Guide to Hydrological Practices 1974), así:

\[
Q = \frac{Q_{t} \cdot C_{t}}{C}, \text{ para una inyección continua}
\]

La precisión del procedimiento depende de la concentración inicial relativa a la concentración final del trazador, pero generalmente se obtienen errores que oscilan alrededor del 1%.
El análisis de los datos de la prueba continua se basa en un balance de masa de trazador, así:

\[Q \cdot C + Q_t \cdot C_t = Q_f \cdot C_f \]

siendo \(Q_f = Q + Q_t \)

reemplazando y despejando se obtiene:

\[Q = \frac{Q_t \cdot (C_t - C_f)}{C_f - C} \]

Donde:
- \(Q \) = caudal a calcularse
- \(Q_t \) = caudal del trazador inyectado
- \(C_t \) = concentración inicial del trazador
- \(C_f \) = concentración final del trazador
- \(C \) = concentración del trazador en el afluente

Para la calibración de estructuras de medición es necesario estimar el caudal aproximado que pasa por el medidor a calibrar, con la finalidad de determinar la concentración de Rhodamina a añadir, el mismo que es función del rango de lectura posible del instrumento de análisis. Luego, ubicar el lugar de dosificación a una distancia prudente del medidor para asegurar una buena mezcla del colorante. Diez litros de trazador son generalmente suficientes para cada operación. Vertir el colorante por espacio de 10-15 min con un dosificador manual o preferiblemente conformado por una bomba acoplada a un regulador de voltaje para asegurar una dosificación constante. Muestrear a intervalos constantes de tiempo a la altura del medidor y medir la carga sobre ella.

Calibración y mantenimiento de limnigráficos

Un limnigráfico es esencialmente un medidor continuo de altura de agua (ver Figura 4). Está compuesto por un sistema de relojería y un cilindro que contiene el papel de registro, en cuyo extremo tiene una polea por donde pasa un cable. A su vez el cable lleva atado en un extremo una pesa y en el otro una boya. La boya es colocada dentro del pozo de medición que está conectado al canal por un agujero. Los cambios de caudal cambiarán el nivel de agua dentro de dicho pozo, el cual subirá o bajará la boya, que a su vez moverá el cilindro. Siendo el marcador una pieza que se desplaza a lo largo del cilindro, estas variaciones de altura resultarán registradas en el papel a través del tiempo.
El papel de registro, que se encuentra enrollado alrededor del cilindro y asegurado por dos resortes anillados, debe ser cuidadosamente cambiado cada cierto tiempo.

La calibración se efectúa cerrando momentáneamente la entrada de crudo al canal. La boya se posará al fondo del pozo y el marcador deberá coincidir con la línea de base del papel. Si no fuera así es necesario ajustarla a la línea de referencia. Se requiere mucho cuidado con el cable insertado en la rueda, ya que éste se mantiene en posición gracias a unos topes esféricos contenidos en el cable que coinciden con agujeros en la rueda. Si el tope llega a salir de su posición original es necesario volver a calibrar el limnógrafo. Es importante mantener el pozo libre de sólidos, vertiendo en ellos chorros de agua antes de la calibración y la materia acumulada dentro del pozo de medición será de este modo eliminada por el agujero de interconexión.

Operaciones para determinar pérdidas

Es importante la determinación de pérdidas por evaporación e infiltración en las diferentes lagunas para poder así realizar el balance hídrico mensual. El procedimiento es relativamente fácil, pero es necesario preparar y probar la eficacia de los materiales a usarse. La prueba consiste en cortar simultáneamente el caudal de entrada y salida en la laguna a evaluar y proceder a la medida de la altura de agua, en el momento de inicio de la prueba y al cabo de las 24 horas. Para mayor precisión se puede medir por más tiempo (48 ó 72 horas).

8. Trabajos de rutina

Observaciones de campo

La actividad sin duda más importante para un buen manejo de lagunas de estabilización es el recorrido diario de las instalaciones y la anotación de las observaciones en un formulario (Cuadro 7).

Cada laguna que conforma la serie debe tratarse por separado, ya que cada una de ellas no sólo es una unidad con características definidas -probablemente con evidentes diferencias entre las otras lagunas y por lo tanto con diferentes necesidades y peligros de mal funcionamiento sino que por su ubicación, diferencia de carga, etc., pueden reaccionar adversamente a algún cambio climático y funcionar ineficientemente. Es por esta razón que la observación minuciosa y constante del comportamiento de cada laguna es tan importante que se hace necesario llegar a familiarizarse con cada una de las lagunas para poder así tomar decisiones de manejo al más remoto indicio de irregularidad en el funcionamiento, para que el daño sea lo menos posible.
Figura No. 4
PARTES DE UN LIMNIGRAFO STEVENS
a) Apariencia y color

La coloración y apariencia de una laguna puede ser causada por la presencia de diferentes tipos de microorganismos existentes en las capas superficiales de agua y que a su vez están influenciados por las cargas orgánicas y de nutrientes.

Una laguna primaria sin mayores problemas produce efluentes de coloración verdosa a verde-lechosa. Una laguna secundaria presenta efluentes de coloración verdosa a verdosa verde lechosa. Una laguna de maduración en buen funcionamiento tiene efluentes de coloración siempre verdosos.

Una laguna primaria funcionando deficienmente tiene una apariencia espesa con coloraciones que varían entre el gris y el rosado. Esto ocurre cuando la laguna ha sido sobrecargada y/o el período de retención es tan corto que no se obtiene una completa estabilización de la materia orgánica. En este caso es necesario poner la laguna fuera del funcionamiento o reducir la carga orgánica.

El deficiente funcionamiento de la laguna secundaria se debe usualmente a un proceso en cadena originado en la laguna primaria, y se hace evidente por su apariencia lechosa extrema y coloración que varía de pardo-lechosa a rosada.

La coloración verde-lechosa indica, según Yáñez (1975), un proceso de autofloculación. Esto sucede cuando el pH y la temperatura en la laguna se han elevado a tal punto que se produce la precipitación de los hidróxidos de magnesio o de calcio, acaeciendo consigo las algas y otros microorganismos hacia el fondo. Las especies de algas que sufren por este proceso son las Clorellas y Scenedesmus, no así las Euglenas que por su motilidad tratan de mantenerse en la superficie.

La coloración parda es usualmente causada por el excesivo crecimiento, desencadenado por el cambio en las condiciones de la laguna, de rotíferos o ciertos crustáceos (Copépodos y/o Ostrápodos) que se alimentan de las algas, los cuales pueden llegar a acabar con la población íntegra de algas en pocos días. Esto resulta en la reducción de oxígeno disuelto y pH y la probable generación de malos olores. La coloración rosada se da ocasionalmente en lagunas de maduración debido a las mismas razones por las que ocurren en las primarias y son producto de la imposibilidad de asimilar las nuevas condiciones del efluente primario por las poblaciones dentro de la laguna secundaria.
Cuadro No. 7
FORMULARIO PARA LA ANOTACION DE LAS OBSERVACIONES DIARIAS DE CAMPO

CENTRO PANAMERICANO DE INGENIERIA SANITARIA Y CIENCIAS DEL AMBIENTE

<table>
<thead>
<tr>
<th>FECHA</th>
<th>HORA DE OBSERVACIÓN</th>
<th>APARIENCIA</th>
<th>LAGUNAS OBSERVADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Perla</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verde limpio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosada</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marrón</td>
<td></td>
</tr>
<tr>
<td>Llagos Flotantes</td>
<td>Aumentada</td>
<td>Ligera</td>
<td>Abundantes</td>
</tr>
<tr>
<td>PATAS VEGETALES</td>
<td>Aumentada</td>
<td></td>
<td>Algunas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Considerables</td>
<td></td>
</tr>
<tr>
<td>Olor</td>
<td>Inodoro</td>
<td>Ligero</td>
<td>Agradable</td>
</tr>
<tr>
<td>DIQUES</td>
<td>Cristo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hayas</td>
<td>Eroión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetación</td>
<td>Ausente</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ligera</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abundante</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSPARENCIA (cм)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTURA DE AGUA (cм)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESENCIA DE AVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESENCIA DE INSECTOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECES O CAMARONES VISIBLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSIDERACIONES METEOROLÓGICAS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guía: Viento (V) - Soleado (S) - Nublado (N) - Oscuro (O) - Lluvioso
Una laguna de maduración con problemas de funcionamiento usualmente ofrece a la vista una apariencia espesa acompañada de una coloración extremadamente verdosa o una apariencia muy transparente acompañadas de coloraciones que varían de verdosa a parda o también manchas de coloración variable, según los microorganismos que se desarrollen en ella.

Una coloración verdosa sumamente densa indica un crecimiento excesivo de algas que resulta en la reducción de la capa fótica y por lo tanto pueden llevar a la laguna a funcionar anaeróbicamente en las zonas profundas, siempre que no exista una buena mezcla.

Una coloración verde o parda relacionada con altas transparencias, resulta de la predación de las algas por microorganismos zoopláctónicos. Por otro lado, manchas de coloración turquesina causan el desarrollo intenso de algas filamentosas verde-azules indeseables en lagunas de estabilización, ya que este tipo de algas por un lado obstruye la fotosíntesis de las algas verdosas y por otro ciertas especies producen toxinas que podrían causar daño al zooplancton de las lagunas. Las manchas rosadas a rojas son debido a la proliferación incontrolada de ciertos tipos de crustáceos y/o de rotíferos.

b) Transparencia

Para una buena evaluación de la apariencia y la coloración de las lagunas es necesario acompañar éstas con datos de transparencia, ya que ofrecen una excelente indicación relativa de las concentraciones de algas y por lo tanto de oxígeno disuelto en las lagunas. La penetración de la luz en las diferentes lagunas es el doble de la indicada por el disco Secchi.

La transparencia de un sistema de lagunas en serie funcionando sin problemas evidencia un aumento de transparencia junto con el grado de tratamiento. Así, una laguna primaria funcionando con una carga orgánica aplicada entre 200 y 400 Kg DBO₅/Ha.día, en promedio tiene una transparencia que se aproxima a los 10 cm; una laguna secundaria de la misma serie ofrece transparencias alrededor de los 15 cm y una laguna de maduración alrededor de los 20 cm. Una apariencia y color fuera de los esperados en cada tipo de laguna, acompañados por los datos de transparencia, proveen de valiosa e inmediata información concerniente a la carga orgánica aplicada o, si es el caso de una laguna de acabado, de algún problema de sobre población de microorganismos predadores de algas. Hay que tomar siempre en cuenta que estos cambios están, por lo general, íntimamente relacionados con cambios de carga orgánica y por lo tanto es necesario estar especialmente alerta en tiempos de cambios estacionales.
c) Temperatura

La temperatura influye directamente en la fotosíntesis al afectar la velocidad metabólica de los microorganismos presentes en las lagunas. Por esta razón, los cambios bruscos de temperatura pueden afectar negativamente la eficiencia del tratamiento al favorecer condiciones anaeróbicas y aumentando la turbidez de los efluentes así como su olor. Estos problemas ocurren cuando una mayor demanda de oxígeno no está compensada por una mayor producción de oxígeno. Los datos de perfil de temperatura en las lagunas primarias sirven para estimar la producción de metano en el fondo. Durante el verano, en lagunas de pobre mezcla, se produce estratificación termal, la cual afecta el funcionamiento de lagunas secundarias y acabado. Paralelo a la disminución de la temperatura con la profundidad y a pesar de que las aguas más frías retienen mayor cantidad de oxígeno, éste termina por ser consumido, ocasionando condiciones anóxicas en el fondo. Esto genera la producción de gases que elevan trozos de lodo que si no son removidos, ya sea por medio de desnatadores o destruidos por chorros de agua, promoverán la disminución del área fótica.

d) Caudal

Las mediciones diarias de caudal se miden con una regla en las estructuras hidrálicas de medición tanto a la entrada como a la salida de las lagunas.

e) Burbujeo

La emisión de burbujas que provienen del fondo de las lagunas, junto con ausencia de olores, indica que la fermentación desable del metano está en proceso y que la materia orgánica está sufriendo biodegradación.

f) Datos meteorológicos

Datos como temperatura, precipitación, vientos, nubosidad y radiación circunglobal son de utilidad en los aspectos de prevención de reacciones adversas en las lagunas así como para la interpretación de datos operacionales en proyectos de investigación. Por esta razón, es de suma importancia mantener una simple pero confiable estación meteorológica en la zona de tratamiento.

La temperatura del ambiente así como del agua es de suma utilidad en estimar las velocidades de reacción bioquímica y biológica y pérdidas hidráulicas por evaporación.
La intensidad de los vientos, así como su dirección, son datos muy importantes no sólo porque producen oxigenación de las capas superficiales y favorecen la mezcla de éstas con las capas más profundas, sino que pueden ocasionar cortocircuitos en aquellas lagunas en donde la entrada y la salida están alineadas con la dirección del viento.

Las precipitaciones afectan el normal funcionamiento de las lagunas al causar dilución, reduciendo el período de retención y disminuyendo la temperatura del agua en las lagunas.

La radiación solar es importante ya que es la fuente de energía para la producción de oxígeno por las algas a través de la fotosíntesis. Es de destacar que para intensidades luminicas bajas, la luz es el factor limitante para la producción de oxígeno, sin embargo, para intensidades luminicas altas, la temperatura es el factor que regula la producción de oxígeno. Hess (1981) además añade - y esto se ha podido observar en la práctica - que altas temperaturas estimulan el desarrollo de algas verde-azules (Cyanophytas), reemplazando a las productoras más eficientes de oxígeno, las algas verdes (Clorophytas). Al mismo tiempo, las bacterias aeróbicas en las lagunas primarias consumen mayor cantidad de oxígeno disuelto, propiciando la formación de manchas anaeróbicas en la superficie.

El Cuadro No. 8 puede ser utilizado como ayuda para regular el mantenimiento y el cuadro No. 9 indica el personal necesario para las labores de operación y mantenimiento de las lagunas de estabilización.

f. Operaciones de limpieza

El tratamiento de aguas residuales en lagunas conduce a la acumulación de lodos (sedimentos) en el fondo de ellas cuya cantidad en el año puede alcanzar hasta los 100 litros por habitante.

A menudo, la mayor cantidad de lodos se acumula en la vecindad de la estructura de ingreso formando un cono de sedimentos y el lodo remanente se distribuye uniformemente en el fondo del resto de la laguna.

Dependiendo del tipo de depósito, de la disponibilidad de equipo (bomba, cargador frontal, bulldozer, etc.) y de la frecuencia de la operación de mantenimiento, se podrá emplear cualquiera de los métodos siguientes:
<table>
<thead>
<tr>
<th>AREA INSPECCIONADA</th>
<th>CONDICION O PROBLEMA</th>
<th>DIRECCION O ACCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitios alrededor de la laguna</td>
<td>Crecimiento de arbustos o malezas</td>
<td>Derribar o remover</td>
</tr>
<tr>
<td>Sitios alrededor de la laguna</td>
<td>Inundación por agua de lluvia</td>
<td>Desalojar el agua por medio de pequeños diques</td>
</tr>
<tr>
<td>Pendiente exterior y parte superior de los bordos</td>
<td>Erosión por la lluvia o el viento</td>
<td>Rellenar con tierra y sembrar pasto</td>
</tr>
<tr>
<td>Pendiente exterior y parte superior de los bordos</td>
<td>Pasto grande o malezas</td>
<td>Segar el pasto, cortar las malezas y remover lo cortado</td>
</tr>
<tr>
<td>Pendiente interior de los bordos</td>
<td>Erosión natural o por efecto de olas</td>
<td>Reemplazar las piedras</td>
</tr>
<tr>
<td>Borde de las lagunas</td>
<td>Malezas</td>
<td>Cortar y remover</td>
</tr>
<tr>
<td>Salida de las lagunas</td>
<td>Acumulación de residuos en la criba</td>
<td>Remover los residuos</td>
</tr>
</tbody>
</table>
CUADRO No. 9

PERSONAL RECOMENDADO (1)

<table>
<thead>
<tr>
<th>POBLACION SERVIDA</th>
<th>10.000</th>
<th>25.000</th>
<th>50.000</th>
<th>100.000</th>
<th>250.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ingeniero mecánico (a)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Técnico asistente de laboratorio (b)</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Asistente de supervisor</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Obreros</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Chofer (c)</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Vigilantes (d)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>23</td>
</tr>
</tbody>
</table>

(1) Tomado de Notes on the design and operation of waste stabilization ponds in warm climates of developing countries. World Bank Technical Paper No. 7

(a) Dependiendo de la cantidad de equipo mecánico utilizado

(b) Dependiendo de las facilidades de laboratorio

(c) Función del uso de vehículos, cortadoras de césped, etc.

(d) Función de la localización y cantidad de equipo usado
- Eliminación de los conos de sedimentos situados a la altura de la estructura de ingreso: esta operación se debe realizar cada año o cada cinco años o tan pronto como el lodo aparezca en la superficie de agua, produzca olores desagradables o cause interferencia al caudal de ingreso. Si el lodo es fluido, puede ser retirado mediante equipo de bombeo sin necesidad de vaciar la laguna.

- Limpieza sin necesidad de bajar el nivel de agua. Esta operación es menos frecuente y se ejecuta para eliminar determinadas zonas donde se sospecha exista acumulación de lodos.

- Limpieza después de bajar el nivel de agua. El retiro de lodo puede ser facilitado por el descenso del nivel de agua, especialmente cuando la limpieza es ejecutada con baldes o canjílones. Esta técnica se utiliza para extraer capas gruesas de lodo.

- Limpieza completa. Después de 10 años de funcionamiento, debe ejecutarse una limpieza completa del fondo de las lagunas. La justificación de la limpieza profunda se realiza cuando la cantidad del lodo acumulado es un obstáculo para alcanzar la eficiencia de tratamiento o impide el correcto flujo de las aguas en el interior de las lagunas lo cual conduce a cortos circuitos o reducción substancial de los periodos de retención. La limpieza completa de la laguna es una operación mayor y necesita de la participación de equipo y personal especializado. Los principales pasos son:
 - Evaluación de la cantidad de lodo a ser retirado
 - Aislamiento de la laguna, derivando el caudal a las lagunas adyacentes
 - Vaciado de la laguna, el agua depositada en la laguna debe ser bombeada a la laguna anexa
 - Retiro del lodo, esto se realiza por medio de bombas u otro medio mecánico, tomando el cuidado de no alterar la capa impermeable.

Disposición del lodo

Cuando la cantidad de lodo a ser removido no es muy grande, se puede depositar a un lado de la laguna.

Cantidades mayores pueden ser dispuestas en terrenos agrícolas cercanos a la planta de tratamiento. El lodo bien estabilizado y altamente mineralizado constituye un excelente mejorador del suelo.

En estos casos, la limpieza debe ser programada teniendo en cuenta el calendario agrícola y los tipos de cultivo.
III. PROBLEMAS DE OPERACION Y SUS SOLUCIONES

Gracias a la experiencia adquirida en la operación de lagunas, es posible identificar problemas que comúnmente se presentan durante el funcionamiento de las lagunas.

La mayor parte de estas dificultades son fáciles de resolver si ellos son detectados en su inicio, la causa identificada con exactitud y si la intervención es efectuada con prontitud.

En los cuadros 9 al 24 se resumen los indicadores, causas y soluciones que deben aplicarse para el control adecuado de las lagunas.

IV. IMPLEMENTOS Y HERRAMIENTAS DE MANTENIMIENTO

La mayoría de las instalaciones se mantienen mediante simples operaciones.

Lo adecuado es contar, por ejemplo, con desnatadoras, implementos de jardinería tales como rastrillo, azada, zapapico, pala, grúa de tijeras, guadaña y herramientas tales como llave de manguera, llave para tubos, serrucho, desarmador, martillo, cortadora, taladro, alicates, tijeras, prendas protectoras, cascos, botas y guantes de jefe, etc.

Un bote pequeño o bote salvavidas serán de utilidad para recolectar muestras.

Con estas ayudas el operador puede efectuar pequeñas reparaciones de compuertas de madera, tuberías, accesorios y otros dispositivos así como mantener las instalaciones en buen estado.
Cuadro No. 10

CONTROL DE VEGETACIÓN DE LOS BORDOS

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>El crecimiento de malezas altas, matorrales, arbustos y otras plantas prejudiciales lugares de actividad para los animales, pueden debilitarlos y dar mal aspecto. También reducen la acción del viento en la laguna.</td>
<td>Mal mantenimiento</td>
<td>a. El mejor método es el corte periódico de la maleza.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Siembre en los bordos una mezcla de pasto en la orilla y pasto corto nativo en las demás áreas. Es deseable seleccionar un pasto que forme una buena cama y que haga difícil el crecimiento de plantas altas al apretar el suelo y ganar la competencia a las plantas altas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Rocie con un producto químico para destruir malezas aprobado y asegúrese de consultar con las autoridades antes de aplicarlo. Los siguientes son ejemplos de herbicidas: Dow Dalapon para colas de gato Dow silvex para plantas emergentes Ortho Endo-50 para malezas suspendidas Sulfato de cobre para algas filamentosas Simazine para malezas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Se han usado horregos para que se coman la maleza. Esto puede incrementar los colíformes especialmente en la celda de desague. Practique el pastoreo por rotación para evitar que se acaben las especies de pasto. Un ejemplo de esta rotación sería: pastoree cada área 2 meses de cada 6 meses.</td>
</tr>
</tbody>
</table>
| | | e. Si la vegetación ha invadido los taludes, se puede aplicar arsenito de sodio en proporción de 20 g por metro cuadrado, con lo cual, se elimina todo crecimiento por tres o cuatro años.
<table>
<thead>
<tr>
<th>INDICADORES/ OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>La laguna tiende a secarse</td>
<td>Infiltración a</td>
<td>a. Cuando</td>
</tr>
<tr>
<td>fácilmente provocando olor</td>
<td>través del</td>
<td>la infiltración es a través de los diques, es necesario reponer la capa de arcilla o impermeabilizar por otros medios.</td>
</tr>
<tr>
<td>desagradable, crecimiento de plantas y proliferación de insectos.</td>
<td>fondo o por los diques.</td>
<td>b. Cuando la infiltración es a través de los diques, es necesario impermeabilizar las grietas con arcilla de buena calidad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. En algunos casos, la cantidad de agua infiltrada se puede suplir por contribución de agua de buena calidad o agua residual si el sistema consta de varias lagunas.</td>
</tr>
<tr>
<td>INDICADORES/OBSERVACIONES</td>
<td>CAUSAS PROBABLES</td>
<td>SOLUCIONES</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Es necesario controlar las formaciones de nata para prevenir problemas de olores y eliminar los sitios de reproducción de los mosquitos. Además masas flotantes reducen la luz solar. | El material del fondo de la laguna se está levantando y el lodo está flotando a la superficie. - Mala circulación y poca acción del viento. Grandes cantidades de grasas y aceites en el influente también causan nata. | a. Utilice rastrillos, una bomba portátil para hacer un chorro de agua o una lancha de motor para romper la nata. Ya rota la nata generalmente se hunde.

b. Cualquier nata remanente debe retirarse y disponerse enterrándola o transportándola a un relleno sanitario aprobado. |
Cuadro No. 13

CONTROL DE MALOS OLORES

<table>
<thead>
<tr>
<th>INDICADORES/ OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los olores son un problema general para el público.</td>
<td>Los olores resultan generalmente de la sobrecarga, de períodos largos de clima nublado, de la mala circulación en la laguna, de desechos industriales, población de algas escasa debido a que el agua residual es de naturaleza ácida, muy alcalina o a la falta de nutrientes.</td>
<td>a. Use la alimentación en paralelo en las celdas primarias para reducir la carga.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Aplique productos químicos como el nitrato de sodio para introducir oxígeno, la tasa de aplicación es de 5 a 15% de nitrato desodio por kilo de DBO o 1.000 metros cúbicos - Consulte con los fabricantes para otros productos comerciales. Repita el procedimiento a tasas menores en los días subsecuentes o utilice 110 Kg de nitrato de sodio por hectárea en el primer día, 55 Kg por Ha en los siguientes días. Sí persisten los olores, aplíquelo en la cauda de una lancha de motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Instale aeración suplementaria, tal como aeradores flotantes, aeradores de jaula, o difusión de aire para proveer mezclado y oxígeno. También ayudan los viajes en lancha de motor por la laguna. Nota: El agitar la laguna puede causar que los olores empeoren por un corto tiempo, pero se reducirá la duración total del período de malos olores.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. La falta de nutrientes se soluciona haciendo un análisis químico al agua, los principales nutrientes son nitrato y fósfato.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. La acidez se controla con tratamiento con cal, para mantener en la laguna un pH entre 7.5 y 9.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Disfrazar el olor mediante soluciones químicas es otra solución.</td>
</tr>
</tbody>
</table>
Cuadro No. 14
CONTROL DE ALGAS AZUL-VERDES

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
</table>
| Bajo pH (menos de 6.5) y oxígeno disuelto (menos de 1 mg/l), malos olores aparecen cuando se mueren las algas. | Las algas azul verdes son un indicio de tratamiento incompleto, sobrecarga y/o mal balance de nutrientes. | a. Aplique tres veces una solución de sulfato de cobre.
 Si la alcalinidad total es mayor de 50 mg/l aplique 1.25 kilos de sulfato de cobre por cada 1,000 metros cúbicos en la laguna.
 Si la alcalinidad es menor de 50 mg/l reduzca la cantidad de sulfato de cobre a 0.6 kilos por 1,000 metros cúbicos.

b. Rompa los crecimientos de algas con una lancha de motor o con una bomba portátil y una mangueira. El motor de la lancha debe ser de enfriamiento por aire ya que las algas pueden apagar los motores enfriados por agua.
<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBALES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presencia de insectos en el área y presencia de larvas de insectos en la laguna.</td>
<td>Mala circulación y mal mantenimiento.</td>
<td>Solución para el control de mosquitos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Mantenga limpia las lagunas y permita que la acción de las olas en los bordos evite que se creen los mosquitos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Mantenga la laguna libre de nata.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Siempre la laguna con gambusia (pez mosquito).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Rocie con larvicida como última instancia. Consulte con las autoridades cuales productos están aprobados.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algunos que se han usado son el Dursban, el Malel, el Fenithon y el Abate en dosis de 1 mg/l.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Control sobre el nivel de operación.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cuando el nivel de agua se hace descender varios centímetros, las larvas que estaban en la zona de los diques cercana a la superficie, perecen al secarse dicha zona.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cuando el nivel se hace subir, las larvas perecen por efecto de la inundación provocada. Por lo tanto, la oscilación periódica del nivel del agua en la laguna, contribuye a mantener el control de los mosquitos. Mantener una máxima profundidad en la laguna, evita la vegetación emergente que es fuente de insectos. Se recomiendan profundidades mayores que 0.90 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solución para controlar jejes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Sembrar la laguna con gambusia (pez mosquito).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Aplique un insecticida aprobado. Se han empleado el Fenithon, Abate y Dursban, según las indicaciones del fabricante.</td>
</tr>
</tbody>
</table>
Cuadro No. 16

MEJORAR REMOCION DE ALGAS EN EL EFLUENTE

<table>
<thead>
<tr>
<th>INDICADORES/ OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>La mayoría de los sólidos suspendidos presentes en el efluente de una laguna se deben a las algas. Debido a que muchas algas de una sola célula son móviles y también muy chicas, son difíciles de remover.</td>
<td>Las condiciones climáticas o de temperatura que favorecen a una población particular de algas.</td>
<td>a. Extraiga el efluente de abajo de la superficie usando un buen arreglo de divisiones.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Use lagunas múltiples en serie.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. El uso de filtros intermitentes de arena y filtros de roca sumergidos también se pueden usar, pero requieren de modificaciones y de los servicios de un ingeniero consultor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. En algunos casos se han usado dosis de 20 mg/l de sulfato de aluminio en las lagunas finales para mejorar la calidad del efluente en descargas intermitentes. Las dosis a este o a menores niveles no son tóxicas.</td>
</tr>
</tbody>
</table>
Cuadro No. 17

CORRECCIÓN DE LAGUNAS CON POCA CARGA

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las lagunas con carga lige-</td>
<td>Exceso de capacidad, gasto estacional bajo.</td>
<td>a. Corregir incrementando la carga al reducir el número de lagunas en uso.</td>
</tr>
<tr>
<td>rra pueden producir algas filamentoas y mohos, los cuales limitan la penetración de la luz del sol. Estas formas también tienden a taponar las salidas de las lagunas.</td>
<td></td>
<td>b. Use operación en serie.</td>
</tr>
</tbody>
</table>
Cuadro No. 18
CORRECCION DE OXIGENO DISUELTO BAJO

<table>
<thead>
<tr>
<th>INDICADORES/ OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Una tendencia continua hacia abajo en el OD, es indicativo de posibles condiciones anaerobias en el futuro y la causa de malos olores. El tratamiento es menos eficiente.</td>
<td>Mala penetración de luz, bajo tiempo de retención, alta carga de BOD o de desechos industriales tóxicos. (El OD durante el día no debe bajar de 3.0 mg/l durante los meses de calor).</td>
<td>a. Remueva las malezas como la lenteja de agua si estas cubren más del 40% de la laguna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Reduzca la carga orgánica en las lagunas primarias cambiando a operación en paralelo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Suministre aeración suplementaria (aeradores superficiales, difusores y/o la operación diaria de una lancha de motor).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Agregue recirculación usando una bomba portatil para regresar el esfufente final al inicio de la planta.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Suministre nitrato de sodio (vea la sección de como controlar iones para la dosis).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Determine si la sobrecarga se debe a una fuente industrial y eliminela.</td>
</tr>
<tr>
<td>INDICADORES/OBSERVACIONES</td>
<td>CAUSAS PROBABLES</td>
<td>SOLUCIONES</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Problemas de olor, OD bajo en algunas partes de la laguna, condiciones anaerobias y bajo pH encontrados al revisar los valores de diversas partes de la laguna anotadas en un plano de la laguna. Si las diferencias son de 100 a 200% pueden indicar cortos circuitos. Después de anotar las lecturas para cada punto, las áreas que no tienen buena circulación son evidentes. Estas áreas se caracterizan por bajo OD y pH.</td>
<td>Mala acción de viento debido a árboles o un pobre acomodo de las instalaciones de entrada y salida. También se puede deber a la forma de la laguna, al crecimiento de maleza o a la irregularidad del fondo.</td>
<td>a. Corte los árboles y los matorrales por 10 metros menos a una distancia de 150 metros de la laguna en la dirección de los vientos dominantes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Instale divisiones alrededor de la entrada para mejorar la distribución.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Agregue recirculación para mejorar el mezclado.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Ponga nuevos puntos de entrada y de salida incluyendo entradas múltiples.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Elimine la maleza.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Nivele el fondo.</td>
</tr>
<tr>
<td>INDICADORES/OBSERVACIONES</td>
<td>CAUSAS PROBABLES</td>
<td>SOLUCIONES</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Una laguna facultativa que se convierte en anaerobia resultando en TNB alto, sólidos suspendidos y nata en el efluente de una laguna de descarga continua. Los malos olores, la presencia de bacterias filamentosas y colores amarillo-verdoso y gris y la quietud de la superficie, indican condiciones anaerobias.</td>
<td>Sobrecarga, corto circuitos, mala operación o descargas tóxicas.</td>
<td>a. Cambie de operación en serie a paralelo para dividir la carga. Esto ayuda si las condiciones existen en determinada época del año son diferentes a las normales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Agregue aeración suplementaria si la laguna está continuamente sobrecargada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Cambie las entradas y salidas para eliminar los cortos circuitos. Vea la sección correspondiente a cortos circuitos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Agregue recirculación (use bombas portátiles temporalmente) para proporcionar oxígeno mezclado.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. En algunos casos se puede obtener alivio temporal agregando nitrito de sodio con las dosis en la sección de control de olores.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Elimine las fuentes de descargas tóxicas.</td>
</tr>
</tbody>
</table>
Cuadro No. 21
CORRECCION DE TENDENCIA DECRECIENTE DEL pH

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>El pH controla el ambiente para diferentes tipos de algas, la ---chlorella necesita un pH de 8.0 a 8.4.</td>
<td>Los valores decrecientes del pH son seguidos por una baja en el OD a medida que las algas verdes mueren. Esto es causado generalmente por sobrecargas, por periodos largos de clima adverso, o por animales mayores, como la ---daphnia, que se alimenta con las algas.</td>
<td>a. Desconecte la celda y deje la descansar.</td>
</tr>
<tr>
<td>El pH debe estar en el lado alcalino, preferentemente entre 8.0 y 8.4.</td>
<td></td>
<td>b. Use operación en paralelo.</td>
</tr>
<tr>
<td>Tanto el pH como el OD deben variar durante el día con la lectura más baja al amanecer y la más alta al caer la tarde.</td>
<td></td>
<td>c. Aplique recirculación del efluente de la laguna.</td>
</tr>
<tr>
<td>Mida el pH a la misma hora cada día y haga una gráfica con los resultados.</td>
<td></td>
<td>d. Investigue la posibilidad de cortocircuitos.</td>
</tr>
<tr>
<td></td>
<td>e. Instale equipo de aeración complementario si el problema es persistente y se debe a sobrecarga.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Investigue la posibilidad de causas tóxicas y externas de la muerte de las algas y corrija la fuente.</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro No. 22

ELIMINACION DE PREDADORES DE ALGAS

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presencia de rotíferos: en los costados de la laguna se desarrolla coloración amarillenta o café.</td>
<td>Agua de baja calidad.</td>
<td>a. El control químico de dichos organismos es efectuado con el uso de insecticidas o larvicidas. La aplicación de orto-dibrom 8 (California/Spray Chemical Co.) en dosis de 1.2 l por hectárea, reduce en 99% la Daphnia y organismos similares. El control de rotíferos puede ser efectuado con el uso de rotenona, aplicación superficial, con dosis de 2.4 l por hectárea. El tratamiento es caro y se debe utilizar cuando la presencia de predadores es tan grande, que ha producido olores por un período prolongado.</td>
</tr>
<tr>
<td>En medio de la laguna se forman natas de color anaranjado o gris-verdoso.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presencia de tipos inferiores de crustáceos como la Daphnia: formación de natas de color anaranjado y rosado.</td>
<td></td>
<td>b. El control biológico de predadores de algas se puede efectuar cultivando el pez gambusia; sin embargo, este cultivo es únicamente posible en lagunas que han estado en operación por algunos años.</td>
</tr>
</tbody>
</table>
Cuadro No. 23
CORRECCION A SOBRECARGAS

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>La sobrecarga puede resultar en el tratamiento incompleto de las aguas residuales.</td>
<td>Corto circuitos, desechos industriales, mala ingeniería, infiltraciones, construcción nueva (área deservicio en expansión), tratamiento inadecuado y condiciones climáticas.</td>
<td>a. Desconecte la laguna y déjela descansar.</td>
</tr>
<tr>
<td>Los problemas de sobrecarga se pueden detectar por los olores ofensivos y por colores amarillo-verdoso o grís. Deben considerarse también las pruebas de laboratorio que muestren un pH y un OD bajos y una carga excesiva de DBO.</td>
<td></td>
<td>b. Use operación en paralelo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Aplique recirculación del efluen te en la laguna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Investigue la posibilidad de corto circuitos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Instale equipos de aeración complementaria.</td>
</tr>
</tbody>
</table>
Cuadro No. 24
CORRECCION DE DBO ALTA EN EL EFLUENTE

<table>
<thead>
<tr>
<th>INDICADORES/OBSERVACIONES</th>
<th>CAUSAS PROBABLES</th>
<th>SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentraciones altas de DBO que están fuera de las condiciones particulares de descarga. Algas muertas visibles.</td>
<td>Tipo de retención corto, mala localización de la entrada y de la salida, altas cargas orgánicas o hidráulicas y posiblemente compuestos tóxicos.</td>
<td>a. Compruebe si el sistema de alcantarillado tiene infiltraciones y elimínelas en la fuente.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Use bombas portátiles para recircular el agua.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Agregue nuevos sitios de entrada y salida.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Reduzca las cargas debidas a fuentes industriales, si están sobre lo normal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Evite las descargas tóxicas.</td>
</tr>
</tbody>
</table>
BIBLIOGRAFIA

13. YUKIE UEHARA, M.; LIMA V., W.; KAWAI, H.; FARIA, J.E.; BEZERRA, J.F; SOBRINHO, P.A. Operação e manutenção de lagoas anaeróbias e facultativas