INFORME TECNICO 275

Fecha: 14 de marzo de 1980

Autor: Carl R. Bartone, Asesor en Análisis de Sistemas, CEPIS

Asunto: Modificaciones al modelo SIMOX-II para incorporar subrutina para condiciones anaeróbicas

Propósito

Debido a que a menudo se encuentran condiciones anaeróbicas en un río, tales como existen por ejemplo en el Río Bogotá desde la confluencia con el Río Juan Amarillo hasta aguas abajo del Salto Tequendama, se estima conveniente incorporar al SIMOX-II las modificaciones sugeridas por Gundelach y Castillo.\(^1\) En seguida se proponen los cambios al programa existente de computación, necesarios para hacerlo funcionar en condiciones anaeróbicas.

Descripción de los cambios

Para simplificar la tarea solamente se harán cambios en la subrutina SIMOX. Esto implicaría lo siguiente:

1. Se supone que no hay posibilidades de dilución, por tanto QDISP será fijado igual a cero para todos los tramos del río. Como corolario se fija ODSTD = 0.0 para todo tramo también. Las dos variables se controlan en los datos de entrada.

2. Para evitar que el programa se para en forma prematura cuando se encuentran condiciones anaeróbicas, debido a instrucciones encontradas en el programa principal SIMOX2, hay que garantizar que la variable ODMIN nunca tome valores menores o iguales a cero, ni que QREQ tome el valor -1. Por lo tanto, en la nueva subrutina SIMOX siempre se adoptan las reglas ODMIN > 0.01 y QREQ = 0.0. Las dos variables se controlan en los cálculos internos de SIMOX.

3. Los cálculos en la subrutina SIMOX se hacen kilómetro por kilómetro dentro de un tramo dado. Si el cálculo empieza en condiciones aeróbicas al inicio, pero termina al final del kilómetro en condiciones anaeróbicas, se adoptará la decisión de rehacer el cálculo con un nuevo modelo anaeróbico (ANAE). También si las condiciones al inicio son anaeróbicas se aplicará el nuevo modelo ANAE. En todos los otros casos se aplicará el modelo aeróbico (AEROB).

Subrutina SIMOX modificada

Se muestra la subrutina SIMOX modificada en el diagrama de flujo del...

...Anexo 1.

Del programa existente en el manual de SIMOX-II, se puede conservar las siguientes líneas de instrucciones: SIMO 10 - SIMO 290 y SIMO 550 - SIMO 760. El resto tendrá que codificarse de acuerdo con el diagrama de flujo.

Subrutina AEROB

La subrutina AEROB para condiciones anaeróbicas está basada en el modelo de Thomann que está incorporado actualmente al SIMOX-II. Se incluye en un diagrama de flujo para AEROB en el Anexo 2.

La subrutina AEROB incluirá las líneas de instrucciones SIMO 300 hasta SIMO 540 del manual existente. Además se debe repetir el bloque de instrucciones SIMO 20 hasta SIMO 140.

Subrutina ANAE

El modelo de Gundelach y Castillo, que se utilizará en ANAE, solamente toma en consideración cambios en DBO carbonáceos. (No es necesario considerar DBO nitrogénicos, ya que el proceso de nitrificación no puede desarrollarse en condiciones anaeróbicas). Este modelo es aplicable hasta que se llega al punto en que la reaeración supera a la DBOC, o sea hasta que se encuentra satisfecha la condición

\[K(I) \ast ODSAT + ALGAS \geq KD(I) \ast DBOCF \]

donde los parámetros y variables son los definidos en el manual.

...En el Anexo 3 se presenta el diagrama de flujo de la subrutina ANAE. Para esta subrutina se debe repetir el bloque de instrucciones SIMO 20 hasta SIMO 140.

La computación de DBOC final se hace aplicando la ecuación 21a de Gundelach y Castillo, sustituyendo el término \((X - x_i)/U\) de aquellos autores por el término \(T\) del modelo SIMOX-II. (El valor de la variable \(T\) está calculado en la subrutina SIMOX modificada).
Adicionalmente hay que agregar el cómputo de la OD final de acuerdo con la condición señalada en el diagrama de flujo y descrita arriba.

Conclusiones y recomendaciones

Es factible aplicar el modelo de Gundelach y Castillo al Río Bogotá, e inclusive es lógico ya que el río tiene relativamente poca capacidad de dilución.

Por lo tanto, se recomienda que los técnicos de la EAAE efectúen las modificaciones indicadas en el presente informe en el modelo SIMOX-II para que puedan usarse en condiciones anaeróbicas como las del Río Bogotá.

Anexos