PROYECTO DE DESARROLLO TECNOLOGICO DE LAS INSTITUCIONES DE
ABASTECIMIENTO DE AGUA POTABLE Y ALCANTARILLADO
(DTIAPA)

PARAMETROS FISICO-QUIMICOS EN EL TRATAMIENTO DE AGUAS RESIDUALES
MEDIANTE LAGUNAS DE ESTABILIZACION
Quim. María Luisa Castro L.

CURSO PARA INGENIEROS SOBRE OPERACION Y MANTENIMIENTO
DE LAGUNAS PARA LA ESTABILIZACION DE AGUAS RESIDUALES
Lima-Perú, 15-26 de setiembre de 1980
PARAMETROS FISICO-QUIMICOS EN EL TRATAMIENTO DE AGUAS RESIDUALES MEDIANTE LAGUNAS DE ESTABILIZACION

1. CARACTERIZACION DE LAS AGUAS RESIDUALES

Antes de tratar sobre los parámetros de interés en el ecosistema de una laguna de estabilización y los parámetros de control del tratamiento, es útil describir las características del agua residual cruda. Nos referimos aquí principalmente a las aguas residuales domésticas, ya que las provenientes de la industria varían considerablemente de una a otra.

En primer lugar, el agua cruda consiste aproximadamente de 99.9% de agua pura. Esto puede parecer sorprendente, pero las impurezas constituyen sólo el 0.1% del peso total de aguas residuales.

¿Cuáles son entonces las diferencias entre el agua pura (i.e. agua potable) y las aguas residuales? Se han efectuado diversos estudios sobre los cambios en la calidad del agua debidos al uso doméstico. El cuadro 1 muestra un resumen de los resultados de uno de estos estudios.

Las aguas residuales contienen en solución una serie de compuestos orgánicos e inorgánicos, algunos de los cuales sufren transformaciones en el medio acuático, debido a la acción bioquímica de microorganismos o por reacciones químicas, mientras que otros se acumulan, pues no están sujetos a tales transformaciones.

Debido a esto la caracterización de las aguas servidas a ser tratadas o dispuestas en corrientes receptoras, debe incluir información sobre compuestos orgánicos e inorgánicos presentes, su biodegradabilidad, su posible transformación por métodos físico-químicos, y su potencial tóxico o inhibidor de la fisiología de los microorganismos.

La cantidad o la concentración de compuestos orgánicos presentes en las aguas, generalmente se cuantifica o mide en términos de la demanda de oxígeno que es necesario para su estabilización, o bien en términos de su contenido de carbono.

En el primer caso se utilizan los ensayos de laboratorio de Demanda Bioquímica de Oxígeno (DBO), Demanda Química de Oxígeno (DQO) y Demanda Total de Oxígeno (DTO). En el segundo caso se utiliza el ensayo de Carbon Orgánico Total (COT).

La caracterización de los compuestos inorgánicos debe incluir aquellos ensayos y pruebas de laboratorio que entreguen información sobre el contenido de sustancias que requieren un tratamiento preliminar especial, tales como sólidos en suspensión, volátiles, sedimentables, pH, acidez, alcalinidad, etc. También se debe evaluar la concentración de compuestos nutrientes como fósforo y nitrógeno en sus diferentes estados de oxidación y, por último, se debe evaluar la presencia y concentración de compuestos tóxicos, tales como metales pesados, etc. y de compuestos inhibidores o que interfieren con el tratamiento, tales como cobre, cloruros, sulfatos.
Cuadro 1

DEPRECIACIÓN DE LA CALIDAD DEL AGUA MEDIANTE USO MUNICIPAL

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Agua del caño Promedio (mg/l)</th>
<th>Efluente de Alcantarilla Promedio (mg/l)</th>
<th>Incremento (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQO sin filtración</td>
<td>6.0</td>
<td>265</td>
<td>259</td>
</tr>
<tr>
<td>DQO con filtración</td>
<td></td>
<td>101</td>
<td>95</td>
</tr>
<tr>
<td>DQO con filtración, corregido para Cl⁻</td>
<td>2.0</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>Detergentes aniónicos</td>
<td>0.02</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Oxíhídrico aromático (ácido tánico)</td>
<td>0.05</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Carbohidratos (glucosa)</td>
<td>0.05</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Azúcares reductores (glucosa)</td>
<td>0.005</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Nitrógeno orgánico (N)</td>
<td>0.07</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Nitrato (N)</td>
<td>0.67</td>
<td>4.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Nitrito (N)</td>
<td>0.031</td>
<td>0.33</td>
<td>0.3</td>
</tr>
<tr>
<td>Amoníaco (N)</td>
<td>0.02</td>
<td>16.1</td>
<td>16.1</td>
</tr>
<tr>
<td>Nitrógeno total (N)</td>
<td></td>
<td></td>
<td>22.0</td>
</tr>
<tr>
<td>Alcalinidad total (CaCO₃)</td>
<td>141</td>
<td>263</td>
<td>122</td>
</tr>
<tr>
<td>Calcio (Ca⁺⁺)</td>
<td>52</td>
<td>75</td>
<td>23</td>
</tr>
<tr>
<td>Magnesio (Mg⁺⁺)</td>
<td>15</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Potasio (K⁺)</td>
<td>1.9</td>
<td>11.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Sodio (Na⁺⁺)</td>
<td>13.5</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>Fosfato (PO₄³⁻)</td>
<td>0.043</td>
<td>24.3</td>
<td>24.3</td>
</tr>
<tr>
<td>Ortofosfato</td>
<td>0.011</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Sulfato (SO₄²⁻)</td>
<td>68</td>
<td>101</td>
<td>33</td>
</tr>
<tr>
<td>Cloruro (Cl⁻)</td>
<td>15.1</td>
<td>70.9</td>
<td>56</td>
</tr>
<tr>
<td>Residuo 105°C</td>
<td>256</td>
<td>547</td>
<td>291</td>
</tr>
<tr>
<td>Pérdida por ignición</td>
<td>58</td>
<td>127</td>
<td>69</td>
</tr>
<tr>
<td>pH*</td>
<td>8.3</td>
<td>7.5</td>
<td>-0.8</td>
</tr>
<tr>
<td>Conductancia específica µohm/cm*</td>
<td>422</td>
<td>916</td>
<td>494</td>
</tr>
</tbody>
</table>

* Las unidades para pH y para conductancia específica no están expresadas en mg/l.
El cuadro 2 comprende la composición típica de tres clases de aguas residuales domésticas y la figura 1 ofrece un resumen visual de la composición de sólidos en aguas residuales crudas. El cuadro 3 resume la composición de algunas aguas residuales industriales.

Los procesos de tratamiento normalmente tienen como objetivo principal remover sólidos (suspendidos y sedimentables), compuestos biodegradables, organismos patógenos y en algunos casos la remoción de nutrientes.

El cuadro 4 ofrece un resumen de los procesos convencionales más comunes para el tratamiento de aguas residuales.

Cuadro 2

COMPOSICION TIPICA DE TRES CLASES DE AGUAS RESIDUALES DOMESTICAS

<table>
<thead>
<tr>
<th>Constituyente</th>
<th>Concentración, mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alta</td>
</tr>
<tr>
<td>Sólidos totales</td>
<td>1200</td>
</tr>
<tr>
<td>disueltos totales</td>
<td>850</td>
</tr>
<tr>
<td>fijos</td>
<td>525</td>
</tr>
<tr>
<td>volátiles</td>
<td>325</td>
</tr>
<tr>
<td>en suspensión totales</td>
<td>350</td>
</tr>
<tr>
<td>fijos</td>
<td>75</td>
</tr>
<tr>
<td>volátiles</td>
<td>275</td>
</tr>
<tr>
<td>Sólidos sedimentables, ml/l</td>
<td>20</td>
</tr>
<tr>
<td>DBO (5 días, 20°C)</td>
<td>300</td>
</tr>
<tr>
<td>DO</td>
<td>570</td>
</tr>
<tr>
<td>Nitrógeno total (como N)</td>
<td>85</td>
</tr>
<tr>
<td>orgánico (como N)</td>
<td>35</td>
</tr>
<tr>
<td>amoniacal (como N)</td>
<td>30</td>
</tr>
<tr>
<td>Fósforo total (como P)</td>
<td>20</td>
</tr>
<tr>
<td>Cloruros (como Cl)</td>
<td>100</td>
</tr>
<tr>
<td>Alcalinidad (como CaCO₃)</td>
<td>200</td>
</tr>
<tr>
<td>Grasas</td>
<td>150</td>
</tr>
<tr>
<td>Calcio (como Ca)</td>
<td>110**</td>
</tr>
<tr>
<td>Magnesio (como Mg)</td>
<td>10**</td>
</tr>
<tr>
<td>Sodio (como Na)</td>
<td>100**</td>
</tr>
</tbody>
</table>

* agua blanda
** agua dura
<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>AGUA POTABLE</th>
<th>AGUA DE DESAGÜE CRUDO</th>
<th>N° Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>s</td>
<td>max</td>
</tr>
<tr>
<td>Alcalinidad mg/l CaCO₃</td>
<td>113.7</td>
<td>3.71</td>
<td>120</td>
</tr>
<tr>
<td>Calcio mg/l CaCO₃</td>
<td>257.6</td>
<td>12.2</td>
<td>270</td>
</tr>
<tr>
<td>Cloruro mg/l Cl⁻</td>
<td>27.72</td>
<td>6.01</td>
<td>39.7</td>
</tr>
<tr>
<td>Conductividad</td>
<td>615.4</td>
<td>61.7</td>
<td>682</td>
</tr>
<tr>
<td>Dureza total mg/l CaCO₃</td>
<td>308.0</td>
<td>11.7</td>
<td>322</td>
</tr>
<tr>
<td>Magnesio mg/l CaCO₃</td>
<td>51.68</td>
<td>348.</td>
<td>56</td>
</tr>
<tr>
<td>N. Amoniacal mg/l N-NH₃</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>N. Orgánico mg/l N-Org.</td>
<td>0.10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>N. Nitrato mg/l N-NO₃</td>
<td>0.78</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>N. Nitrito mg/l N-NO₂</td>
<td>0.03</td>
<td>0.052</td>
<td>0.09</td>
</tr>
<tr>
<td>N. Total mg/l N</td>
<td>0.91</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Oxígeno disuelto mg/l</td>
<td>9.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DBO₅ mg/l</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DQO mg/l</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PH unidades</td>
<td>7.47</td>
<td>0.12</td>
<td>7.60</td>
</tr>
<tr>
<td>Fosfato total mg/l Pt</td>
<td>0.07</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fosfato orto mg/l O-P</td>
<td>0.09</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sólidos totales mg/l</td>
<td>509.7</td>
<td>14.17</td>
<td>520</td>
</tr>
<tr>
<td>Sólidos fijos mg/l</td>
<td>408.8</td>
<td>31.51</td>
<td>442</td>
</tr>
<tr>
<td>Solubles totales mg/l</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Solubles fijos mg/l</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sulfato mg/l SO₄²⁻</td>
<td>222</td>
<td>8.48</td>
<td>228</td>
</tr>
<tr>
<td>Sodio mg/l</td>
<td>9.2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Potasio mg/l</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Coli total NMP/100 ml</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Coli fecal NMP/100 ml</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Coli fecal N° colonias/100 ml</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* No se efectuaron por ser cantidades muy pequeñas o no significativas en desagüe crudo
Cuadro 2-B

CAMBIO DE LA CALIDAD DEL AGUA POTABLE DEBIDO A SU EMPLEO DOMESTICO

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>Incremento en mg/ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcalinidad</td>
<td>133.9</td>
</tr>
<tr>
<td>Calcio</td>
<td>44.9</td>
</tr>
<tr>
<td>Cloruro</td>
<td>87.68</td>
</tr>
<tr>
<td>Conductividad</td>
<td>561.6</td>
</tr>
<tr>
<td>Dureza total</td>
<td>74.0</td>
</tr>
<tr>
<td>Magnesio</td>
<td>27.87</td>
</tr>
<tr>
<td>N. Amoniacal</td>
<td>29.3</td>
</tr>
<tr>
<td>N. Orgánico</td>
<td>17.1</td>
</tr>
<tr>
<td>N. Nitratos</td>
<td>-0.738</td>
</tr>
<tr>
<td>N. Nitritos</td>
<td>0.05</td>
</tr>
<tr>
<td>N. Total</td>
<td>45.712</td>
</tr>
<tr>
<td>Oxígeno disuelto</td>
<td>-9.4</td>
</tr>
<tr>
<td>DBO₅</td>
<td>174.3</td>
</tr>
<tr>
<td>DQO</td>
<td>332.3</td>
</tr>
<tr>
<td>PH</td>
<td>0.04</td>
</tr>
<tr>
<td>Fosfato total</td>
<td>4.34</td>
</tr>
<tr>
<td>Ortofosfato</td>
<td>2.98</td>
</tr>
<tr>
<td>Sólidos totales</td>
<td>514</td>
</tr>
<tr>
<td>Sólidos fijos</td>
<td>29.33</td>
</tr>
<tr>
<td>S. solubles totales</td>
<td>208.5</td>
</tr>
<tr>
<td>S. solubles fijos</td>
<td>29.33</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>18.3</td>
</tr>
<tr>
<td>Sodio</td>
<td>51.35</td>
</tr>
<tr>
<td>Potasio</td>
<td>14.65</td>
</tr>
<tr>
<td>Coli total</td>
<td>11.89 x 10⁷</td>
</tr>
<tr>
<td>Coli fecal</td>
<td>52.6 x 10⁶</td>
</tr>
<tr>
<td>Coli fecal</td>
<td>12.4 x 10⁶</td>
</tr>
</tbody>
</table>

Además presencia en el desague crudo de E. Coli, Giardia intestinales y en menos proporción Endolimaxana, larvas de strongyloides stercoralis, trichuris trichura y huevos de ascaris.
Figura 1

CLASIFICACIÓN PROMEDIO DE SOLIDOS PRESENTES EN AGUAS RESIDUALES DOMÉSTICAS

TOTAL 700 mg/l

EN SUSPENSIÓN 200 mg/l

SEDIMENTABLES 2 HORAS 100 mg/l

ORGÁNICOS 75 mg/l

MINERAL 25 mg/l

NO SEDIMENTABLES 100 mg/l

ORGÁNICOS 75 mg/l

MINERAL 25 mg/l

FILTREABLES 500 mg/l

COLOIDALES 50 mg/l

ORGÁNICOS 40 mg/l

MINERAL 10 mg/l

DISUELLOS 450 mg/l

ORGÁNICOS 160 mg/l

MINERAL 240 mg/l
Cuadro 3

COMPOSICIÓN DE ALGUNAS AGUAS RESIDUALES INDUSTRIALES

<table>
<thead>
<tr>
<th>TIPO DE AGUA RESIDUAL</th>
<th>DBO₅, mg/l</th>
<th>DQO, mg/l</th>
<th>Sólidos en suspensión, mg/l</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrias de Indumentaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textiles - Algodón</td>
<td>200-1000</td>
<td>400-1800</td>
<td>200</td>
<td>8-12</td>
</tr>
<tr>
<td>Lana (limpiada)</td>
<td>2000-5000</td>
<td>2000-5000</td>
<td>2000-30000</td>
<td>9-11</td>
</tr>
<tr>
<td>Lana (compuesta)</td>
<td>1000</td>
<td>-</td>
<td>100</td>
<td>9-10</td>
</tr>
<tr>
<td>Curtiembres</td>
<td>1000-2000</td>
<td>2000-4000</td>
<td>2000-3000</td>
<td>11-12</td>
</tr>
<tr>
<td>Industrias de Alimentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervecerías</td>
<td>850</td>
<td>1700</td>
<td>90</td>
<td>4-6</td>
</tr>
<tr>
<td>Destilerías</td>
<td>7000</td>
<td>10000</td>
<td>Bajo</td>
<td>-</td>
</tr>
<tr>
<td>Procedimiento de leche</td>
<td>600-1000</td>
<td>150-250</td>
<td>200-400</td>
<td>Acido</td>
</tr>
<tr>
<td>Enlatadoras (cítricos)</td>
<td>2000</td>
<td>-</td>
<td>800</td>
<td>Acido</td>
</tr>
<tr>
<td>Mataderos y frigoríficos</td>
<td>1500-2500</td>
<td>200-400</td>
<td>800</td>
<td>7</td>
</tr>
<tr>
<td>Procesamiento de aves</td>
<td>500-800</td>
<td>600-1050</td>
<td>450-800</td>
<td>6.5-9</td>
</tr>
<tr>
<td>Desechos agrícolas</td>
<td>1000-2000</td>
<td>500-1000</td>
<td>1500-3000</td>
<td>7.5-8.5</td>
</tr>
<tr>
<td>Industrias de materiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulpa - sulfito</td>
<td>1440-1700</td>
<td>84-10000</td>
<td>Variable</td>
<td>7-9.5</td>
</tr>
<tr>
<td>Kraft</td>
<td>100-350</td>
<td>170-600</td>
<td>75-300</td>
<td></td>
</tr>
<tr>
<td>Papel cartón</td>
<td>100-450</td>
<td>300-1400</td>
<td>40-100</td>
<td></td>
</tr>
<tr>
<td>Cartón prensado</td>
<td>950</td>
<td>850</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>Refinerías</td>
<td>100-500</td>
<td>150-800</td>
<td>130-600</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 4

PROCESOS CONVENCIONALES MAS COMUNES EN EL TRATAMIENTO DE AGUAS RESIDUALES

| Separación por gravedad | Sedimentación simple
| | Sedimentación después de coagulación química |
| Tratamiento biológico | Filtros percoladores con sedimentación secundaria
| | Lodos activados
| | Lagunas de estabilización |
| Filtración | Cribas finas
| | Microcribas
| | Filtros lentos
| | Filtros rápidos en efluente secundario
| | Filtros rápidos en efluentes secundarios después de coagulación química
	Filtración de efluente de lodos activados en carbón activado (adsorción)
Cloración	Cloro líquido y compuestos de cloro
Digestión	Digestión anaeróbica

En los procesos de tratamiento de las aguas residuales se consideran dos tipos de tratamiento. El primario, que es el más elemental, donde la mayoría de ensayos de evaluación se relacionan con la determinación de las características del agua cruda como del efluente sedimentado. El tratamiento secundario sigue generalmente al primario y logra un grado más alto de remoción de impurezas. Mientras que el tratamiento primario es un proceso físico, el secundario es un proceso biológico.

Las lagunas de estabilización corresponden a una clase de tratamiento que normalmente es de tipo secundario, pero a veces son utilizadas para depurar u obtener un tratamiento adicional del efluente de tratamiento primario o secundario.
El tratamiento de aguas residuales más simple y económico es el que se efectúa mediante el sistema de lagunas de oxidación o estabilización, el que tiene especial importancia en países en desarrollo como el nuestro donde, debido a su alto costo y complicada tecnología es prohibitivo el uso de técnicas sofisticadas.

Entre las desventajas de este método se encuentran los requerimientos de terreno, el tratamiento de concentraciones adecuadas de las cargas orgánicas y la dependencia del proceso de condiciones ambientales.
2. DESARROLLO BIOQUÍMICO

Para la operación y mantenimiento del tratamiento mediante lagunas de estabilización, se requiere un control continuo del proceso porque, a pesar del conocimiento y entendimiento de los mecanismos bioquímicos básicos involucrados, pueden aparecer muchos problemas especialmente relacionados a la operación inadecuada o a una sobrecarga.

En el diagrama esquemático del proceso que ocurre en el ecosistema de una laguna de estabilización, como se muestra en la figura 2, se puede apreciar la relación entre la luz solar, la temperatura, el crecimiento de las algas y la producción de oxígeno resultante. Con el fin de estudiar los procesos que ocurren en la laguna de estabilización y para establecer conceptos de diseño, se puede considerar a dichas lagunas como reactores de mezcla completa, asumiendo que existe un viento cortante y que las reacciones que allí se producen obedecen a una cinética de primer orden. Aplicando condiciones fijas al sistema para establecer el balance de un sustrato, tal como el de la demanda bioquímica de oxígeno (DBO), en términos de concentración de DBO que ingresa en el afluente, coeficiente de primer orden de decaimiento de la DBO y el período de retención del sustrato correspondiente, se ha encontrado que se pueden establecer parámetros de diseño en zonas tropicales.

Al modificar este proceso para incluir los efectos de la capa de lodo bén-tico se asume que una fracción de la DBO que entra en el afluente se sedimenta y contribuye a la formación de gas.

Además de estos factores analizados se debe considerar aspectos tales como el área superficial, radiación solar, caudal del afluente, carga inicial como DBO del afluente, carga final como DBO del efluente, velocidad del viento, temperatura del líquido de la laguna, temperatura del aire y la humedad relativa (ver figura 3).
FIGURA 3 DIAGRAMA DEL MODELO DINAMICO DE LAGUNAS FACULTATIVAS

(ADAPTADO DE FRITZ, ET-AL)
A pesar de todas estas consideraciones, falta conocer otros factores que ajusten a la realidad, el modelo que representa el proceso, aún cuando sabemos que la variación bioquímica ocurre teniendo como base la actividad fotosintética.

El crecimiento de las algas se produce a expensas del nitrógeno, fósforo y carbono inorgánico en forma de CO$_2$ y HCO$_3^-$ procedente de la oxidación bacteriana de la materia orgánica y de la alcalinidad del afluente. Reportes de estudios indican que las algas Euglena, Chlorella y Clamydomonas son las que se presentan con más frecuencia y se asume que su fórmula química corresponde a C$_{106}$ H$_{263}$ O$_{110}$ N$_{16}$ P en una proporción de pesos de C: N: P igual a 41:7:1, respectivamente, con producción estequiométrica de oxígeno de 1.3 y en otros casos de 1.22 moles de O$_2$ por mol de CO$_2$ empleado.

Debido a la actividad fotosintética, durante el día se pueden alcanzar niveles de sobresaturación de oxígeno tan alto como 36 mg/l del cual algo se pierde en la atmósfera.

Las variaciones del pH durante el día son comunes debido al uso de CO$_2$ por las algas, lo cual se explica mediante la disociación del HCO$_3^-$ para producir el ion hidroxilo. Durante las horas de la tarde pueden ocurrir variaciones del pH entre 7 y 9 unidades. El crecimiento de las algas se ve afectado cuando el pH alcanza cerca de 9 unidades, debido a que con este pH la actividad bacteriana comienza a disminuir y se produce una reducción en la producción de CO$_2$. Las variaciones de pH y oxígeno disuelto durante el día y todos los componentes no estáticos del sistema, como biomasa y especies bioquímicas cuyas cinéticas están sujetas a influencias ambientales, afectan los mecanismos del proceso.

Los parámetros de interés, tanto del afluente como del efluente, son la DQO y DBO soluble, el OD, la masa de las bacterias, la masa de algas, el carbón orgánico e inorgánico, el fósforo orgánico e inorgánico, nitrógeno orgánico, amoníaco y nitrato.

La capa de lodo anaeróbico se acopla al módulo de mezcla completa a través del intercambio continuo del flujo de la masa. En esta capa se producen los procesos de digestión anaeróbica de las bacterias y de la biomasa que ha sedimentado. El nitrógeno inorgánico y el fósforo, así como el dióxido de carbono y el metano, retornan a la capa líquida como nutrientes para el crecimiento de la biomasa.

El sistema depende del comportamiento de las diferentes variables en función del tiempo, sujeto a factores físicos ambientales, de un lugar específico y un tiempo fijado que determinan la velocidad de reacción y, por lo tanto, la concentración de las especies.

Entre las variables energéticas tenemos la radiación solar, la fuerza del viento, la temperatura del aire. Entre los componentes hidrológicos tenemos el caudal, la precipitación pluvial, la evaporación y la infiltración.
El régimen de mezcla y la transferencia interfacial del oxígeno y del dióxido de carbono está controlado por la fuerza del viento.

La energía térmica proviene de las radiaciones atmosféricas de onda corta y onda larga y de la temperatura de las aguas residuales. La energía, al final del proceso, corresponde al resultado del movimiento, longitud de onda larga, reflexión y evaporación. La energía empleada en la fotosíntesis de las algas resulta de las radiaciones solares de onda corta que penetran a través del aire a la interfase del agua.

a. El crecimiento cinético de las bacterias en cultivos en lotes usando el concepto de un nutriente limitante, se efectúa por intermedio de una reacción de orden mixta basada en la cinética de Monod. Esta formulación es similar a la expresión usada en cinética enzimática de Michaelis-Menten. En este modelo la velocidad de crecimiento bacteriano heterotrófico está basado en la disponibilidad del sustrato "S" que puede estar presente como DO y nutrientes necesarios para la síntesis. El decrecimiento debido a las concentraciones pequeñas y no suficientes de nitrógeno y fósforo se puede expresar algebraicamente como el producto de la fórmula de Michaelis-Menten para estos nutrientes. Debido a que las bacterias aeróbicas requieren del oxígeno para metabolizar los residuos, las concentraciones de oxígeno también son consideradas como limitantes de la velocidad. La tasa de la respiración bacteriana se ve incrementada con la temperatura. Para el crecimiento de las bacterias se requiere de un ambiente adecuado. (figura 4, a, b, c y d).

Figura 4

\[4a.\]

\[4b.\]

\[4c.\]

\[4d.\]
b. El crecimiento de las algas está limitado por la ausencia del dióxido de carbono, nitrógeno inorgánico y total y fósforo inorgánico y total.

3. PARÁMETROS QUÍMICOS

OXÍGENO DISUELTO.- La presencia del oxígeno disuelto en el agua es una condición fundamental para el desarrollo de la vida acuática, vegetal y animal, y evitar la descomposición anaeróbica de la materia orgánica.

Durante el ciclo diurno suelen ocurrir variaciones en la concentración de oxígeno en el agua, desde la sobraturación hasta su consumo casi total.

Figura 5
SIMULACIÓN DE OXÍGENO DISUELTO PARA LAGUNA DE NUEVO MEXICO, EE.UU.
Las fuentes de oxígeno en el agua son la aeración y la fotosíntesis de las algas. Su remoción se debe a la respiración de los vegetales, DBO de materiales orgánicos y sedimentos, deaeración, sobresaturación y reducción de inorgánicos.

La concentración de saturación del oxígeno disuelto en el agua depende de varios factores especialmente la temperatura, presión y salinidad.

En la fotosíntesis hay una relación estequiométrica entre el oxígeno producido y el peso de las células de algas sintetizadas (1.244 mg de O₂/mg de células de algas).

\[106 \text{ CO}_2 + 16 \text{ NO}_3^- + \text{HPO}_4^{2-} + 122 \text{ H}_2\text{O} + 18 \text{ H}^+ \rightarrow \]

\[C_{106} \text{ H}_{263} \text{ O}_{110} \text{ N}_{16} \text{ P} + 138 \text{ O}_2 \]

En la respiración el uso de oxígeno por las células bacterianas, si se asume que su composición es \(C_5H_7NO_2 \) corresponderá al consumido según la siguiente ecuación:

\[C_5H_7NO_2 + 5 \text{ O}_2 \rightarrow 5\text{CO}_2 + 2\text{ H}_2\text{O} + \text{NH}_3 \]

La baja solubilidad del oxígeno es el principal factor que limita la capacidad de purificación de las aguas naturales y obliga a efectuar tratamiento de las aguas servidas para remover la materia contaminante antes de descargar en los cursos receptores. En los procesos de tratamiento biológicos aeróbicos, la limitada solubilidad del oxígeno es de importancia, porque gobierna la velocidad a la cual el O₂ se disuelve y por lo tanto, el costo de la aeración.

EL NITROGENO

El nitrógeno entra en las lagunas de estabilización en forma de cuatro tipos de compuestos: amoniaco, nitrógeno orgánico, nitritos y nitritos. Algo de nitrógeno de la atmósfera puede fijarse mediante la acción de algunas especies de algas. El nitrógeno de la biomasa de las aguas residuales que se encuentran en forma de proteínas es hidrolizado formando los amino ácidos que por acción de las bacterias van a transformarse en amoniaco, luego en nitrito y por último en nitrato.

Inicialmente parte del amoniaco soluble se combina con \(\text{H}^+ \) para formar iones amonio como sigue:

\[\text{NH}_3 + \text{H}^+ \rightarrow \text{NH}_4^+ \]

Este efecto tiende a elevar el pH. El ion amonio, por la acción de las nitrosomonas autotróficas y nitrobacterias, es cambiado a nitrito primero y luego a nitrato.
Estas reacciones requieren de 4,57 mg de oxígeno por cada miligramo de amoníaco nitrificado como N. La concentración de nitrato es mayor que la concentración de nitritos, debido a que la nitrobacteria requiere de cerca de tres veces más de sustrato que las nitrosomonas para obtener la misma cantidad de energía. Por ello la concentración de nitritos es pequeña y por lo tanto la nitrificación es considerada directamente dependiente de las bacterias nitrosomonas, a través de la siguiente reacción:

\[\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{NO}_3^- + 2\text{H}_2^+ \]

Figura 6

CAMBIOS QUE OCURREN EN LAS FORMAS NITROGENADAS PRESENTES EN AGUAS POLUIDAS BAJO CONDICIONES AEROBICAS

Si la laguna es operada en la forma correcta, la denitrificación solo debe ocurrir cerca de la región bácnica. Comúnmente, no hay información de que ocurran procesos de denitrificación en las lagunas facultativas.

La nitrificación se describe como un proceso dependiente de la temperatura, oxígeno disuelto y pH.
Las bacterias nitrificantes autotróficas, específicamente las nitrosomonas, son sensibles a los valores de pH altos o bajos, los cuales inhiben su crecimiento, particularmente a valores menores que 7 y mayores que 9. Es posible que la presencia de amoníaco libre y el ácido nitroso también inhiban el desarrollo de los organismos nitrificantes, debido a las diferencias de pH que pueden causar entre el interior y exterior de la célula.

Al igual que las bacterias autotróficas, las algas metabolizan el amoníaco y el nitrato, pero prefieren el amoníaco, el cual debe haberse consumido antes de que se comience a utilizar el nitrato para la síntesis celular.

FOSFORO

Análogamente al N, el fósforo es un nutriente de gran importancia para el crecimiento y reproducción de los microorganismos que participan en la estabilización de la materia orgánica presente en las aguas servidas. El fósforo aparece en dos formas: en compuestos orgánicos (por ejemplo: proteínas) y en compuestos minerales (principalmente polifosfatos y ortofosfatos). Los polifosfatos se encuentran principalmente en los residuos que contienen detergentes sintéticos.

En el caso de aguas residuales domésticas, el contenido de fósforo preocupa no por insuficiencia sino por exceso, ya que efluentes de planta de tratamiento ricos en P provocan proliferación excesiva de algas en el curso de agua receptor.

CARBONO

a. **Carbono inorgánico**

La conducta del sistema carbonatado en el ambiente acuático es bien conocida y se puede resumir en la figura 7.

Estudios relativos a la determinación de nutrientes limitantes que controlan el crecimiento de las algas en casos de eutrofificaciones severas de lagos y corrientes, indican que el carbón inorgánico es un factor limitante del crecimiento por la disolución lenta del CO₂ que se produce a través de la interface agua-aire. Pero algunos autores indican que la acción bacteriana incrementa la cantidad de CO₂ disponible en las lagunas, de tal manera que favorece el crecimiento de las algas al punto tal de que el nitrógeno y fósforo llegan a ser los nutrientes limitantes del desarrollo de las algas.

Durante las horas de luz se produce la fotosíntesis donde las células de las algas asimilan el carbón inorgánico y la concentración del ion (H⁺) decrece debido al cambio que se produce en el equilibrio H₂CO₃, HCO₃⁻ y CO₃²⁻. Así el pH alcanza los valores más altos con la mayor intensidad de la luz solar, efectuándose en esos momentos la síntesis de la mayor cantidad de células de algas. Cuando el pH alcanza y pasa de 9, el proceso biológico es inhibido.
Figura 7

SISTEMA CARBONATADO DEL AGUA EN EQUILIBRIO; \(p\text{CO}_2 \) constante

El agua está en equilibrio con la atmósfera \((\text{CO}_2 = 10^{-3.5} \text{ atm}) \), constantes \((25^\circ C)\) \(pK_h = 1.5, pK_1 = 6.3, pK_2 = 10.25, pK \) (hidratación del \(\text{CO}_2 \)) = -2.8

\[
\begin{align*}
[H_2\text{CO}_3] & = \text{CO}_2 + H_2\text{CO}_3 \\
C_t & = [H_2\text{CO}_3] + [\text{CO}_3^-] + [\text{HCO}_3^-]
\end{align*}
\]

Una pequeña fracción de los requerimientos fotosintéticos provienen de la transferencia del dióxido de carbono de la atmósfera a la fase líquida.

También se obtiene \(\text{CO}_2 \) procedente de la oxidación de los compuestos orgánicos solubles y la respiración bacterial, este último en la proporción del oxígeno consumido.

En algunos casos las aguas de las lagunas pueden llegar a ser muy alcalinas debido a la remoción del \(\text{CO}_2 \) como resultado del crecimiento de las algas. Si no se produce precipitación, se considera a dicha alcalinidad como conservativa porque las reacciones de ionización reversibles no afectan el balance de masas.
Figura 8

DIAGRAMA DE CONTORNOS DEL pH VERSUS CT

El punto que define la composición de la solución cambia como un vector en el diagrama, como un resultado de la adición (o remoción) del CO$_2$, Na H CO$_3$ y CaCO$_3$ (Na$_2$CO$_3$) o C$_B$ y C$_A$ (K.S. Deffeyes. Limnol. Oceanog., 10, 412. 1965)
Figura 9

DIAGRAMA DE CONTORNOS DE pH VERSUS ACIDEZ

(Acidez) remanente incambiable después de la adición o remoción de Na$_2$CO$_3$ o CaCO$_3$. La dirección y extensión relativa de los cambios de la composición de solución como resultado de la adición de productos químicos.

Durante la nitrificación, la producción de iones hidrógeno procedentes de la oxidación del amoniaco produce cierta acidez. Se anula 2 mg de alcalinidad por mol de NH$_4^+$ oxidado. Esto equivale a 7.14 mg de alcalinidad / mg de NH$_3$ nitrificado.
b. **Carbono orgánico.**

El carbono orgánico procede de los desechos orgánicos y es el principal constituyente del material biológico. Los valores del COT pueden correlacionarse con los valores de la DQO y la DBO.

La figura 10 muestra cómo va cambiando con respecto al tiempo en presencia de bacterias, protozoarios y cuál es su relación con el consumo del oxígeno.

DEMANDA BIOQUIMICA DE OXIGENO

La DBO se define como la cantidad de oxígeno necesaria para que una población microbiana heterogénea establezca la materia orgánica biodegradable presente en una muestra de agua residual.

Por lo tanto, la DBO representa una medida indirecta de la concentración de materia orgánica e inorgánica degradable o transformable biológicamente. Son materias orgánicas no biodegradables: lignina, celulosa, pesticidas clorados, algunos detergentes, etc.

Este ensayo tiene su mayor aplicación en la medición de la carga orgánica de aguas residuales y en la evaluación de la eficiencia del tratamiento de aguas residuales, puesto que las aguas residuales domésticas consisten principalmente en excretas orgánicas que pueden ser utilizadas como nutrientes por otros organismos. Estos organismos metabolizan los compuestos orgánicos del agua servida, a través de reacciones de oxidación y consumen durante el proceso, el oxígeno disuelto en el agua.

La DBO es un parámetro ecológico de gran importancia a la vida acuática.

El ensayo de DBO es un ensayo de simulación.

Recordemos que la reacción que tiene lugar en la naturaleza cuando la materia orgánica es oxidada o estabilizada, al igual que en muchos sistemas de tratamiento de agua servida, es llevada a cabo por las bacterias y otros microorganismos, los que dependen de la descomposición y oxidación de este "material alimenticio", como así mismo de la presencia del oxígeno para el mantenimiento de sus vidas.

Estas reacciones de oxidación son muy semejantes a una combustión, existiendo una relación cuantitativa entre la cantidad y naturaleza de la materia orgánica y la cantidad de oxígeno requerida para su completa estabilización.

El ensayo de DBO permite apreciar cuánto es el oxígeno que probablemente consumen los microorganismos presentes en el agua para estabilizar la materia orgánica.
Figura 10

RELACIÓN ENTRE LA REMOCIÓN DE CARBONO ORGÁNICO CON EL CONSUMO DE O_2 Y EL CRECIMIENTO MICROBIANO

A) El crecimiento de protozoarios retarda el crecimiento de las bacterias tanto como para causar el desarrollo de una meseta en la curva de consumo de O_2, mientras

B) El crecimiento de protozoarios no retarda tanto el crecimiento como para permitir el desarrollo de una meseta en la curva.
El ensayo de DBO consiste en determinar el oxígeno disuelto antes y después de un período de incubación.

Para propósitos prácticos, la reacción se considera completa en 20 días. Sin embargo, en muchos casos un período de 20 días es demasiado largo para esperar resultados. Se ha encontrado por experiencias que un porcentaje razonablemente alto de la DBO total se ejerce en 5 días. En consecuencia, el test ha sido desarrollado sobre la base de un período de incubación de 5 días y 20°C.

Cuando el oxígeno requerido por la muestra es mayor que el que contiene disuelto, se efectúa una dilución de ella con agua que contiene oxígeno disuelto.

La cantidad de veces que hay que diluir depende lógicamente de la demanda de oxígeno de la muestra, pero debe ser tal que después del período de incubación contenga todavía una cantidad apreciable de oxígeno disuelto (entre el 40 y 70% del oxígeno de la muestra diluida inicial) a fin de asegurar la reproductibilidad de los resultados.

Otro criterio que se aplica al seleccionar la dilución es que diluciones confiables consumen por lo menos 2 mg/l y dejan un residuo de 1 mg/l.

La determinación en un laboratorio de la DBO está sujeta a muchas variables y restricciones. A continuación se presentan algunas consideraciones generales sobre ellas.

a. **Tiempo de incubación**

El tiempo necesario para la estabilización completa, de la materia orgánica presente en un agua residual, depende de la naturaleza de ella, aunque frecuentemente se considera que al cabo de 20 días ya se ha logrado una muy buena oxidación. Este ensayo de laboratorio se denomina Demanda Bioquímica de Oxígeno Última DBO₂.

Para fines prácticos la DBO no es medida hasta la oxidación completa de una cantidad determinada de muestra, sino solo la cantidad de oxígeno que se gasta o es consumida en cierto intervalo de tiempo (5 días) a una determinada temperatura (20°C).

b. **Nitrificación**

Generalmente se considera que el ensayo de la DBO solo mide la fracción carbonácea de la muestra. Sin embargo, en el proceso bioquímico que ocurre cuando se incuba la muestra, también puede tener lugar la oxidación del material nitrogenado, con lo cual también se contribuye a ejercer una Demanda Bioquímica de Oxígeno. Las reacciones de oxidación del material nitrogenado, están caracterizadas por una baja tasa de reacción, es decir, la reacción procede muy lentamente. Cuando se le compara con la velocidad a la cual se oxida el material carbonáceo, se podrá constatar que la tasa de reacción de la oxidación del material carbonáceo es mucho mayor que la de reacción de oxidación del material nitrogenado. Aunque ambas reacciones pueden ocurrir simultáneamente, la nitrificación solo se inicia cuando la demanda de oxígeno de la fracción carbonácea se ha satisfecho parcialmente.
c. **Factores ambientales**

Algunos factores ambientales, especialmente la temperatura y el pH, pueden afectar los resultados de la DBO. El procedimiento de laboratorio estandarizado especifica que el ensayo debe realizarse a una temperatura de 20°C.

El valor del pH de la muestra debe ajustarse, si el valor original del pH está fuera del rango 6.5 - 8.3, pues se pueden obtener valores erráticos tal como se muestra en la figura 11.

![Figura 11](image)

EFECTO DEL pH EN LOS RESULTADOS DE DBO

d. **Aclimatación de bacterias**

El factor más comúnmente responsable de resultados erróneos en la prueba de DBO es el uso de "bacterias" no aclimatadas o adaptadas a las aguas residuales cuya DBO se quiere determinar. Este fenómeno sucede principalmente en el análisis de residuos industriales. Por consiguiente, se aconseja aclimatizar el cultivo que se va a usar como "inóculo" en cada muestra de agua residual cuya DBO se va a determinar.

El tiempo para obtener la aclimatación depende del carácter del residuo y de la naturaleza del inóculo (bacteria). Para aguas residuales domésticas esta aclimatación no es necesaria. Para mezclas de aguas residuales domésticas con residuos industriales líquidos, se puede obtener la aclimatación o adaptación en menos de una semana. Si las aguas residuales contienen concentraciones altas de compuestos orgánicos complejos, puede ser necesario un periodo de varias semanas. Los microorganismos que se usan para inocular el agua son obtenidos, generalmente, de aguas residuales que han sido guardadas a 20°C durante 24-36 horas.
c. **Toxicidad**

Algunos materiales o compuestos tóxicos presentes en la muestra de aguas residuales, pueden interferir significativamente con los resultados de la DBO, al tener un efecto biotóxico o bacteriostático sobre los microorganismos que componen la semilla biológica o inóculo. Este efecto generalmente se pone en evidencia por variaciones en los valores de la DBO, la cual aumenta al incrementar la dilución de la muestra. Si la toxicidad es debida a la presencia de metales tóxicos, su efecto puede eliminarse por quelación.

Siempre será necesario predeterminar el valor de dilución por encima del cual los resultados de la DBO son consistentes.

Efecto de toxicidad en resultados de DBO

<table>
<thead>
<tr>
<th>Concentración de muestra</th>
<th>DBO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>35</td>
</tr>
<tr>
<td>5%</td>
<td>91</td>
</tr>
<tr>
<td>2%</td>
<td>140</td>
</tr>
<tr>
<td>1%</td>
<td>152</td>
</tr>
<tr>
<td>0.5%</td>
<td>148</td>
</tr>
</tbody>
</table>

--- **Base matemática de la ecuación de DBO**

- t : tiempo en días
- L : demanda última
- L_t : demanda remanente al tiempo t
- y : demanda satisfecha al tiempo t
- $L + y + L_t$ demanda total es igual a la DBO satisfecha más la DBO remanente
- L_t : fracción de L remanente al tiempo t
- $\frac{y}{L}$: fracción de L satisfecha al tiempo t
- $1 - \frac{L_t}{L} = \frac{y}{L}$: fracción satisfecha

La relación puede expresarse como una ecuación diferencial respecto a t

$$\frac{dL}{dt} = -kL$$
integrando

\[\ln \frac{L_t}{L} = -kt \]

\[\log_{10} \frac{L_t}{L} = -k't \]

\[\frac{L_t}{L} = 10^{-k't} \]

como \(\frac{L_t}{L} = \text{fracción remanente} \)

entonces \(10^{-k't} = \text{fracción remanente} \)

como \(1 - \frac{L_t}{L} = \text{fracción satisfecha} \)

\[1 - 10^{-k't} = \text{fracción satisfecha} \]

\[1 - \frac{L_t}{L} = 1 - 10^{-k't} \]

multiplicando ambos miembros de la ecuación por \(L \)

\[L - L_t = L (1 - 10^{-k't}) \]

como \(L - L_t = y \)

\[y = L (1 - 10^{-k't}) \]

"y" demanda satisfecha al tiempo \(t \) depende de la demanda última del material orgánico \((L) \), de la velocidad a que se realiza la oxidación \((k) \) y del tiempo transcurrido \((t) \).

- **Significado de la constante \(k \)**

La velocidad depende de muchos factores tales como temperatura, nutrientes, población biológica, etc. Este efecto se muestra en la siguiente figura.
La curva superior presenta la DBO de un agua residual doméstica. Para una k de 0.15, el 50% de la demanda se satisface en los dos primeros días, indicando que el tipo de materia orgánica es rápidamente aprovechable por los microorganismos. En 5 días el 83% de la demanda ha sido satisfecho y en 15 días la oxidación está esencialmente completa.

La curva inferior representa la DBO de un curso no contaminado, cuyo valor de k en este caso es 0.05, ya que la materia orgánica presente es esencialmente estable, su oxidación procede lentamente. En 5 días solo el 44% de la demanda se satisface y a los 15 días hay todavía un 17% de materia no oxidada. Nótese que en la curva inferior tarda 15 días en oxidarse un 83% mientras que en la superior (mayor velocidad) el mismo porcentaje se alcanza en 5 días.

Los ensayos de laboratorio de DBO son generalmente de 5 días. En el caso de estas dos muestras, el tiempo estandarizado de 5 días representaría grados muy diferentes de oxidación. Por esto, valores de DBO 5 días sin conocer además la velocidad de oxidación son de poco valor práctico.

DEMANDA QUÍMICA DE OXÍGENO. DQO

La demanda química de oxígeno es un ensayo de laboratorio que mide el equivalente en oxígeno de la fracción de materia orgánica presente en la muestra, que es susceptible de oxidación, en medio ácido, por parte del dicromato de potasio.

Generalmente, se debe esperar que el valor de la DBO Última o DBO_{20} se aproxime al valor de la DQO.
La DQO representa casi un valor límite de posibilidad de oxidación total de un residuo.

Una de las principales limitaciones del análisis de DQO es la incapacidad de diferenciar entre materia orgánica biológicamente oxidable y materia orgánica biológicamente inerte. Además, no permite medir la velocidad con que se estabilizaría la materia biológicamente oxidable en condiciones normales. Sin embargo, la mayor ventaja de la DQO es el corto tiempo que requiere la determinación, unas 3 horas, en comparación con los 5 días que demora la DBO.

La demanda química de oxígeno es útil para determinar las diluciones necesarias en el ensayo de demanda bioquímica de oxígeno.

DEMANDA TOTAL DE OXÍGENO DTO

Este ensayo consiste básicamente en convertir a óxidos estables los componentes oxidables de una muestra.

La DTO incluye sustancias orgánicas e inorgánicas, con diversas eficiencias de reacción. Las reacciones químicas que aparentemente suceden son las siguientes:

- El carbono se convierte en CO₂
- El nitrógeno con valencia -3 se convierte a óxido nítrico.
- El hidrógeno se convierte en agua
- El ion sulfito se convierte parcialmente en sulfato

El valor de la demanda total de oxígeno de los compuestos orgánicos se aproxima mucho más a la demanda teórica de oxígeno que el valor obtenido a partir de los métodos químicos.

Tanto la demanda química de oxígeno como la demanda total de oxígeno miden la concentración de contaminantes orgánicos e inorgánicos oxidables presentes en una muestra de aguas residuales. Por lo tanto, cabe esperarse que entre dichos valores exista una muy buena correlación.

De la misma manera, es más lógico suponer una mejor correlación entre la DBO y la DTO, que entre la DBO y el COT, puesto que en el primer caso se comparan deman-
das de oxígeno, mientras que en el segundo se trata de correlacionar demanda de oxí-
gen con carbono oxidable.

Algunos de los aniones comúnmente presentes en las aguas residuales, tales como cloruros, carbonatos, sulfatos y fosfatos no interfieren con los resultados de la DTO. Sin embargo, se ha encontrado que los nitratos y los ácidos pueden alterar los resultados, pues pueden aportar oxígeno.

El gran inconveniente del ensayo de DTO es el gran costo del instrumental necesario y la alta especialización que requiere su operación.
METALES PESADOS

Los metales pesados pueden ejercer alguna influencia sobre el proceso de tratamiento biológico de aguas residuales. Se han determinado los umbrales de toxicidad para Pb, Zn, Cd, Hg y otros elementos y su valor es cercano a 1.0 mg/l. Sin embargo, en la literatura científica se reporta que no se han presentado efectos nocivos para los sistemas biológicos de tratamiento aún a concentraciones mayores.

4. PARAMETROS FISICOS

pH

El pH varía con la actividad bacteriana, con la actividad fotosintética y de respiración de las algas, con la temperatura y las transformaciones químicas que sufre el agua debido al proceso de estabilización. En la figura 13 se puede apreciar cómo el pH varía por la influencia de la luz solar durante el día y a través de los diferentes meses del año.

Figura 13

VARIACIONES DE pH SIMULADAS PARA LAGUNA EN NUEVO MEXICO, EE.UU.
Estos cambios en el pH a través del ciclo diurno se deben a la actividad fotosintética, la cual consume el dióxido de carbono produciendo una disminución en los iones H^+ y por lo tanto un incremento en el pH. Este fenómeno que a diario ocurre en las lagunas de estabilización se agudiza más cuando la variación diurna del pH ocurre a temperaturas mayores. Esto es porque durante los días fríos hay menos actividad biológica.

El control del pH es importante para el tratamiento de aguas residuales. Su influencia en la composición del carbono inorgánico es de gran interés como se puede apreciar en la sección correspondiente a la presencia del carbono inorgánico en las aguas residuales. En el tratamiento biológico aeróbico, el pH normalmente se desplaza (o mantiene) para la fase alcalina, siendo el mismo una forma de verificación del buen funcionamiento del sistema. Como regla general, el pH óptimo para todos los tratamientos biológicos se encuentra en el rango 6-8. Un cambio del pH producido, por ejemplo, puede dañar el proceso biológico.

Los rangos de pH comúnmente encontrados en el tratamiento de aguas residuales domésticas son: aguas crudas afluentes a plantas 6,8-8,0
lodos recirculados 6,8-7,2
efluente de plantas 6,0-8,0

Los residuos orgánicos con bajo pH debido a la degradación (ácidos orgánicos producidos por el estado sáptico) no necesitan obligatoriamente de adición de álcalis para aumentar su pH, pues el propio tratamiento biológico provoca las condiciones de alcalinización.

SÓLIDOS O RESIDUOS

Los sólidos o residuos son aquellos que se obtienen como materia residual remanente después de evaporar y secar una muestra de agua a una temperatura dada. Todo el material que ejerce una presión de vapor significativa a dicha temperatura se pierde durante el proceso de evaporación y secado. El residuo o material sólido remanente representa aquella fracción del material presente en la muestra que tiene una presión de vapor muy baja a dicha temperatura. Según el tipo de asociación con el agua, los sólidos pueden encontrarse suspendidos o disueltos. Según sus características y comportamiento, los sólidos pueden presentarse en tres estados que corresponden a tamaños progresivamente menores: suspensión, coloidal y disolución. En estricto rigor, el estado coloidal corresponde a partículas suspendidas.

Cuando hay verdadera solución, el soluto tiene dimensiones aproximadamente iguales o inferiores a $1 \text{ m}\mu$, cuando hay estado coloidal, el coloide tiene dimensiones que varían entre $1 \text{ m}\mu$ y $1000 \text{ m}\mu$, y cuando hay suspensión grosera, las partículas o gotas suspendidas tienen tamaños iguales o mayores de $1000 \text{ m}\mu$.
Los sólidos en suspensión de un agua residual se encuentran dispersos en el agua, siendo de tamaño mayor que los coloides. Se remueven parcialmente del agua por medios puramente físicos (específicamente los sólidos sedimentables o decantables).

En los procesos biológicos, parte de los sólidos en solución y en estado colloidal, además de los en suspensión, son transferidos a la masa de lodos siendo así eliminados.

La estimación del volumen de lodo en instalaciones secundarias no puede ser hecha en base a la remoción de sólidos suspendidos (o totales) de un residuo, al contrario que las instalaciones primarias en que se puede hacer esto a partir de los sólidos sedimentables. Los diferentes tipos de tratamientos secundarios aplicados a aguas residuales semejantes pueden generar lodos en volumen (contenido de agua) y con características (drenabilidad) completamente diferentes.

En el tratamiento de aguas residuales el conocimiento de los sólidos es muy importante puesto que la información se usa en el diseño de unidades de tratamiento y en el control del proceso de tratamiento.

El mayor problema en la determinación de "sólidos" de una muestra de agua se presenta cuando se quiere obtener información sobre las varias clases de sólidos existentes, tales como sólidos disueltos, fijos, volátiles, suspendidos, sedimentables, etc.

Las pruebas para determinar las formas de residuos no determinan sustancias químicas específicas y solo clasifican el material que tiene propiedades físicas similares y comportamiento semejante frente a la ignición o secado.
Las pruebas son básicamente de naturaleza empírica y los constituyentes de cada forma de residuos se definen por el procedimiento empleado en la determinación. Por esta razón, la obtención de resultados reproducibles o comparables requiere especial atención en la constancia de los detalles del procedimiento, tales como: tiempo de secado, tiempo de ignición, temperatura y características del filtro.

Determinarlo a una temperatura u otra tiene su importancia ya que varían mucho los resultados encontrados, debido fundamentalmente a que por efecto del calentamiento, se producen modificaciones en la composición química de las sustancias que constituyen el residuo seco.

a. **Sólidos totales**

 Este residuo corresponde al residuo remanente después de secar una muestra de agua servida. Corresponde a la suma del residuo disuelto y suspendido. El residuo total de las aguas con alto contenido de materia orgánica se determina a 103-105°C.

 El residuo total de acuerdo a la naturaleza de los compuestos que lo constituyen puede dividirse en residuo fijo y volátil. Esta clasificación se obtiene secando el residuo total por segunda vez a 550°C.

 El residuo fijo, residuo que queda después de calentar 1 hora a 550°C no hace distinción precisa entre residuo orgánico e inorgánico, porque la pérdida por calentamiento, no solo afecta a la materia orgánica sino incluye también pérdidas debidas a la descomposición y volatilización de ciertas sales minerales como carbonatos, cloruros, sulfatos, etc.

 La pérdida en peso producida por este calentamiento a 550°C se conoce como "residuo volátil". En la práctica se usa mucho como una estimación del contenido orgánico del agua, aún cuando como se explicó anteriormente, hay algunas sales inorgánicas que eventualmente pueden descomponerse originando también una pérdida en peso del residuo.

 El conocimiento del contenido de sólidos totales de un agua residual tiene un interés reducido.

En los tratamientos biológicos, físicos y químicos siempre hay una reducción del contenido de sólidos totales del líquido en tratamiento ya que parte de la materia orgánica es oxidada a CO₂ y H₂O y parte de los sólidos es dispuesta en forma de lodo.

Lo importante es conocer el desdoblamiento de los "sólidos totales" en "sólidos en suspensión" y "sólidos disuelto" y en "sólidos fijos" y "sólidos volátiles".

\[
\text{Sólidos totales} = \text{sólidos en suspensión} + \text{sólidos disueltos} \\
\text{ST} = \text{SS} + \text{SD} \\
\text{Sólidos totales} = \text{sólidos fijos} + \text{sólidos volátiles} \\
\text{ST} = \text{SF} + \text{SV}
\]

Los SS y SD pueden cada uno de ellos ser analizados, así mismo, en su parte volátil y fija resultando SDV, SDF, SSF, SSV.
b. **Residuo disuelto o sólidos disueltos**

Considerando que los sólidos disueltos comprenden los sólidos disueltos y coloidales, sería mejor definirlos como "sólidos filtrables". Para obtener efectivamente los sólidos en solución verdadera, sería necesario usar "ultra filtros", equipos que rutinariamente no existen en los laboratorios.

Los sólidos disueltos son todos los sólidos que se obtienen después de evaporación de una muestra previamente filtrada. Comprende sólidos en solución verdadera y sólidos en estado coloidal no retenidos en la filtración, ambos con partículas inferiores a 1 micron.

Los sólidos disueltos pueden causar un efecto perjudicial a los sistemas de tratamiento biológico de aguas residuales. Se estima que la concentración máxima permisible de sólidos disueltos es de 16,000 mg/l. Por ejemplo: los cloruros en concentraciones que oscilan entre 8,000 y 15,000 mg/l también afectan al sistema de tratamiento biológico, pues no solo contribuyen a reducir las tasas de remoción de la DBO, sino que también disminuyen la tasa de sedimentación de los lodos.

c. **Sólidos en suspensión**

Son todos los sólidos presentes en un agua residual excepto los solubles y los sólidos en fino estado coloidal. A groso modo puede decírse que los sólidos en suspensión son los que tienen partículas superiores a 1 micron. En la práctica los sólidos en suspensión son aquellos posibles de ser retenidos por una filtración en análisis de laboratorio.

d. **Sólidos sedimentables**

Por definición el contenido de sólidos sedimentables de un agua residual es el volumen de sólidos que se deposita al fondo de un cono Imhoff después de un tiempo determinado de reposo del líquido. Por lo tanto, los sólidos sedimentables son parte de los sólidos suspendidos.

El ensayo procura medir la cantidad de sólidos en suspensión grosera que puede retirarse por decantación simple, correspondiendo al material que, cuando se dispone el agua residual en ríos, podría ser el principal formador de bancos de lodos.

e. **Sólidos volátiles y fijos**

Sólidos volátiles son aquellos sólidos presentes en un agua residual y que se volatizan por calcinación a 550°C. El material restante que no se volatiza se define como sólidos fijos.

La diferencia de SF en relación a ST da los SV. La gran mayoría de los sólidos volátiles son material orgánico y la gran mayoría de los sólidos fijos son material inorgánico.
Debido a la buena correspondencia entre materia orgánica y SV, la eficiencia de la remoción de aquella puede ser "estimada" por la remoción de los SV.

TEMPERATURA E IRRADIACION SOLAR

La actividad fotosintética es gobernada por la luz, la temperatura y también la concentración de los nutrientes. Oswald muestra en los reportes de sus estudios que, para la mayoría de especies de algas mesofílicas que se encuentran en las lagunas de estabilización, su máximo crecimiento ocurre entre 20 y 30°C y decrece hasta cero a una temperatura cercana de 35°C.

La irradiación solar que se produce durante las horas del día interviene de manera directa en la fotosíntesis. Particularmente al medio día ocurre la producción máxima de oxígeno que con frecuencia alcanza una sobresaturación. En horas tempranas, debido a que la fotosíntesis es menor, el oxígeno disuelto disminuye como resultado de la demanda continua de las bacterias en el proceso de biodiociación. El período más crítico ocurre desde la media noche hasta aproximadamente las 6 de la mañana. En este período las lagunas pueden llegar a ser anaeróbicas. Cuando esto ocurre se produce sulfuro de hidrógeno que es la causa de problemas de olor. Cuando la luz retorna en la mañana, se reanuda la producción de oxígeno.

Estos parámetros son considerados como factores ambientales que influyen en el proceso de estabilización. Ejemplos de variaciones de la temperatura y radiación solar durante los diferentes meses del año se presentan en las figuras 14 y 15 que se presentan en la siguiente página.
Figura 14
SIMULACION DE TEMPERATURA PARA LAGUNA EN CAMPINA GRANDE, BRASIL

Figura 15
RADIACION SOLAR OBSERVADA Y SIMULADA PARA LAGUNA EN NUEVO MEXICO, EE.UU.
Cuadro 5
VARIACIÓN APROXIMADA DE CARACTERÍSTICAS DE AGUAS RESIDUALES TRATADAS EN LAGUNAS DE ESTABILIZACIÓN CON DIFERENTES PERÍODOS DE RETENCIÓN

<table>
<thead>
<tr>
<th>Característica</th>
<th>Período de retención, días</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crudo</td>
</tr>
<tr>
<td>DIN, 5 días, mg/l</td>
<td>285</td>
</tr>
<tr>
<td>Sólidos totales, mg/l</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>1094</td>
</tr>
<tr>
<td>Fijos</td>
<td>492</td>
</tr>
<tr>
<td>Volátiles</td>
<td>602</td>
</tr>
<tr>
<td>Sólidos en suspensión, mg/l</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>427</td>
</tr>
<tr>
<td>Fijos</td>
<td>75</td>
</tr>
<tr>
<td>Volátiles</td>
<td>352</td>
</tr>
<tr>
<td>Sólidos disueltos</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>667</td>
</tr>
<tr>
<td>Fijos</td>
<td>412</td>
</tr>
<tr>
<td>Volátiles</td>
<td>250</td>
</tr>
<tr>
<td>Coliformes, NMP/100 ml</td>
<td>3×10^8</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>Alcalinidad, mg/l como CaCO₃</td>
<td>479</td>
</tr>
<tr>
<td>Dureza, mg/l como CaCO₃</td>
<td>265</td>
</tr>
<tr>
<td>Cloruros, mg/l como Cl</td>
<td>103</td>
</tr>
<tr>
<td>Fósforo total, mg/l como P</td>
<td>10.4</td>
</tr>
<tr>
<td>Nitrógeno total, mg/l como N</td>
<td>76.4</td>
</tr>
</tbody>
</table>
4. **PARAMETROS A DETERMINAR EN EL TRATAMIENTO DE AGUAS RESIDUALES MEDIANTE LAGUNAS DE ESTABILIZACION**

El cuadro 7 muestra una selección de parámetros que deben ser analizados de acuerdo al interés que se tenga ya sea en el aspecto de salud pública, en el control de los procesos de tratamiento, si se desea conocer la ecología de la laguna, si posteriormente se desea utilizar el efluente en la agricultura o en piscicultura.

El cuadro 8 nos señala las técnicas analíticas más adecuadas para la determinación de los diferentes parámetros de interés en tratamiento de aguas residuales.
<table>
<thead>
<tr>
<th>1. SALUD PUBLICA</th>
<th>2. CONTROL DE PROCESOS</th>
<th>3. ECOLOGIA DE LA LAGUNA</th>
<th>4. AGRICULTURA</th>
<th>5. PISCICULTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcalinidad (carbonatos e hidróxi-</td>
<td>Sólidos suspendidos</td>
<td>Sólidos suspendidos</td>
<td>Conductividad</td>
<td>Sólidos suspendidos</td>
</tr>
<tr>
<td>dos)</td>
<td></td>
<td>Sólidos disueltos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrógeno-nitratos</td>
<td>Alcalinidad (bicarbonatos y carbonatos)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potasio</td>
<td>pH</td>
<td>pH</td>
<td>Cloruros</td>
<td>pH</td>
</tr>
<tr>
<td>Coli total y coli fecal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella y Shiguella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protozoarios y helmintos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcalinidad (bicarbonatos y carbonatos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrógeno amoniacal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrógeno-nitratos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fósforo total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ortofosfato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potasio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fósforo total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ortofosfato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodio/Ca/K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protozoarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmintos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmintos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 8
COMPONENTES DEL PROGRAMA EXPERIMENTAL Y TECNICAS ANALITICAS

<table>
<thead>
<tr>
<th>PARAMETROS</th>
<th>UNIDADES</th>
<th>METODO ANALITICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FACTORES FISICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA</td>
<td>°C</td>
<td>ELECTROMETRICO (EN EL SITIO)</td>
</tr>
<tr>
<td>SOLIDOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Totales</td>
<td>mg/l</td>
<td>GRAVIMETRICO 103°C/550°C</td>
</tr>
<tr>
<td>b. Suspendidos</td>
<td>mg/l</td>
<td>GRAVIMETRICO 103°C/550°C</td>
</tr>
<tr>
<td>c. Disueltos</td>
<td>mg/l</td>
<td>GRAVIMETRICO 103°C/550°C</td>
</tr>
<tr>
<td>B. FACTORES FISICO QUIMICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDUCTIVIDAD</td>
<td>μS/cm</td>
<td>ELECTROMETRICO</td>
</tr>
<tr>
<td>pH</td>
<td>unidades</td>
<td>ELECTROMETRICO</td>
</tr>
<tr>
<td>C. FACTORES QUIMICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXIGENO DISUELTO</td>
<td>mg/l</td>
<td>GALVANOMETRICO/WINKLER</td>
</tr>
<tr>
<td>DEMANDA QUIMICA DE OXIGENO</td>
<td>mg/l</td>
<td>VOLUMETRICO/DICROMATO POTASIO</td>
</tr>
<tr>
<td>ALCALINIDAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Carbonato</td>
<td>mg/l</td>
<td>VOLUMETRICO</td>
</tr>
<tr>
<td>b. Bicarbonato</td>
<td>mg/l</td>
<td>VOLUMETRICO</td>
</tr>
<tr>
<td>c. Hidróxidos</td>
<td>mg/l</td>
<td>VOLUMETRICO</td>
</tr>
<tr>
<td>CALCIO</td>
<td>mg/l</td>
<td>VOLUMETRICO (EDTA)</td>
</tr>
<tr>
<td>MAGNESIO</td>
<td>mg/l</td>
<td>POR DIFERENCIA</td>
</tr>
<tr>
<td>DUREZA TOTAL</td>
<td>mg/l</td>
<td>VOLUMETRICO (EDTA)</td>
</tr>
<tr>
<td>CLORURO</td>
<td>mg/l</td>
<td>VOLUMETRICO (NITRATO MERCURICO)</td>
</tr>
<tr>
<td>SULFATOS</td>
<td>mg/l</td>
<td>TURBIDIMETRICO</td>
</tr>
<tr>
<td>NUTRIENTES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Nitrógeno total</td>
<td>mg/l</td>
<td>POR CALCULO</td>
</tr>
<tr>
<td>b. N-orgánico</td>
<td>mg/l</td>
<td>VOLUMETRICO</td>
</tr>
<tr>
<td>c. N-amoniacal</td>
<td>mg/l</td>
<td>VOLUMETRICO, ESPECTROFOTOMETRICO</td>
</tr>
<tr>
<td>d. N-Nitritos</td>
<td>mg/l</td>
<td>ESPECTROFOTOMETRICO (DIAZOTACION)</td>
</tr>
<tr>
<td>e. N-Nitratos</td>
<td>mg/l</td>
<td>REDUCCION CON CADMIO CUPERIZADO</td>
</tr>
<tr>
<td>f. Ortosfato</td>
<td>mg/l</td>
<td>ESPECTROFOTOMETRICO (ACIDO ASCORBICO)</td>
</tr>
<tr>
<td>g. Fósforo total</td>
<td>mg/l</td>
<td>ESPECTROFOTOMETRICO (H₂SO₄ y HNO₃)</td>
</tr>
<tr>
<td>h. Sodio</td>
<td>mg/l</td>
<td>ABSORCION ATOMICA</td>
</tr>
<tr>
<td>i. Potasio</td>
<td>mg/l</td>
<td>ABSORCION ATOMICA</td>
</tr>
<tr>
<td>D. FACTORES BIOQUIMICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBO 20°C, 5 dias</td>
<td>mg/l</td>
<td>VOLUMETRICO (AZIDA DE SODIO, MOD. DE WINKLER)</td>
</tr>
</tbody>
</table>
5. **GARANTÍA Y CONTROL DE CALIDAD**

Un aspecto importante para la garantía de los datos procesados es asegurar que éstos cuenten con la exactitud y precisión requeridos. La Oficina de Monitoreo y Apoyo Técnico, Oficina de Investigación y Desarrollo, Agencia de Protección Ambiental de los Estados Unidos de Norteamérica propone las siguientes definiciones: "Garantía de calidad es un programa total para asegurar la precisión de los datos de un programa de muestreo y medición. El control de calidad es una aplicación rutinaria de procedimientos para controlar la medida de los procesos".

El cuadro 9 incluye aspectos cuyo control debe tenerse en cuenta bajo un programa de garantía de la calidad.

El control de la calidad es una actividad más limitada y se refiere principalmente al uso de procedimientos estadísticos para evaluar y controlar la posición y exactitud de las medidas analíticas. Un manual detallado en control de calidad analítica ha sido publicado por el Water Research Centre en Inglaterra. Se puede efectuar dos tipos de control: a) Interno en un laboratorio b) y entre un grupo de laboratorios para comparar los resultados entre todos los laboratorios miembros participantes, cada uno de los cuales efectúan internamente su control de calidad.

Un paso importante en el control de la calidad analítica es el establecimiento de los objetivos analíticos en los cuales se incluyen los parámetros (forma exacta de las especies que van a ser determinadas), límite de detección y exactitud requerida. Es de particular importancia el establecimiento de la exactitud requerida. El Water Research Centre hace recomendaciones en relación con la exactitud requerida de los resultados para incluirlas en el banco de datos de calidad del agua.

Estas recomendaciones especifican que los resultados analíticos no deben tener un error mayor que el límite de detección, o el 20% del valor medido, cualquiera de ellos sea el mayor. Este error total se divide arbitrariamente entre el error al azar y el error sistemático, y se dan las siguientes recomendaciones específicas:

1. El error sistemático no debe exceder de la mitad del límite de detección requerido o el 10% del valor medido, sea cual fuere el mayor.

2. La desviación estándar que gobierna la distribución de la frecuencia de los resultados analíticos no deben exceder de un cuarto del límite de detección requerido, o el 5% del valor medido, sea cual fuere el mayor.

Para establecer un programa de control de calidad entre laboratorios que permita la comparabilidad de los resultados analíticos, se debe seguir secuencialmente cada una de las etapas señaladas en el cuadro 10.
Cuadro 9

ELEMENTOS PRINCIPALES EN LA GARANTIA DE LA CALIDAD DE LOS RESULTADOS ANALITICOS

- **MUESTREO**
 - TOMA DE MUESTRAS
 - PRESERVACION (CONSERVACION) DE MUESTRAS
 - TRANSPORTE DE MUESTRAS

- **SERVICIOS DE LABORATORIO**
 - AGUA DESTILADA
 - AIRE COMPRIMIDO
 - CORRIENTE ELECTRICA

- **INSTRUMENTACION**
 - BALANZA ANALITICA
 - MEDIDOR DE pH
 - MEDIDOR DE CONDUCTIVIDAD
 - TURBIDIMETRO
 - ESPECTROFOTOMETROS - UV - VISIBLE
 - ABSORCION ATOMICA
 - ANALIZADOR DE CARBON ORGANICO TOTAL
 - CROMATOGRAFO DE GAS

- **VIDRERIA**
 - SELECCION
 - CALIBRACION
 - LIMPIEZA

- **REACTIVOS**
 - CALIDAD
 - ERROR SISTEMATICO/TESTIGOS
 - ALMACENAMIENTO

- **CONTROL DE CALIDAD ANALITICA**
 - PRECISION
 - EXACTITUD

- **MANEJO DE DATOS E INFORMES**
 - CIFRAS SIGNIFICATIVAS
 - CALCULOS ESTADISTICOS
 - INFORMES Y ALMACENAMIENTO DE DATOS

- **PERSONAL DE LABORATORIO**
 - HABILIDAD
 - ENTRENAMIENTO
 - COMUNICACION
Establecimiento de los grupos de trabajo

Definición de los objetivos analíticos

Selección de los métodos analíticos

Descripción clara de los métodos

Estimación de la precisión dentro del laboratorio

Comparación de soluciones estándares

Mantenimiento de las cartas de control

Pruebas entre laboratorios

Definición de los parámetros, límites de detección y precisión requerida.

Selección de los métodos analíticos con pequeñas fuentes de error sistemático aceptables y precisión adecuada.

Asegurarse que los métodos analíticos escogidos sean completamente claros y que puedan ser seguidos fácilmente por todos los laboratorios.

Estimación de la desviación estándar de los resultados analíticos y, si es necesario, mejorar la precisión hasta que se logren los valores señalados como objetivos.

Asegurarse que las soluciones estándares utilizadas por todos los laboratorios sean comparablemente satisfactorias.

Establecer una carta de control y analizar regularmente soluciones de concentración conocida para asegurarse de que la precisión sea la adecuada.

Estimar el error sistemático de cada laboratorio y, si es necesario, mejorar hasta que se alcance el objetivo señalado.

Cuadro 10

DIAGRAMA DEL FLUJO PARA LOGRAR LA COMPARABILIDAD DE LOS RESULTADOS ANALÍTICOS DE UN GRUPO DE LABORATORIOS