The Sources of Inflammatory Mediators in the Lung after Silica Exposure

K. Murali Krishna Rao, Dale W. Porter, Terence Meighan, and Vince Castranova

Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA

The expression of 10 genes implicated in regulation of the inflammatory processes in the lung was studied after exposure of alveolar macrophages (AMs) to silica in vitro or in vivo. Exposure of AMs to silica in vitro up-regulated the messenger RNA (mRNA) levels of three genes (interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2)) without a concomitant increase in the protein levels. AMs isolated after intratracheal instillation of silica up-regulated mRNA levels of four additional genes [granulocyte/macrophage-colony stimulating factor (GM-CSF), IL-1β, IL-10, and inducible nitric oxide synthase]. IL-6, MCP-1, and MIP-2 protein levels were elevated in bronchoalveolar lavage fluid. Fibroblasts under basal culture conditions express much higher levels of IL-6 and GM-CSF compared with AMs. Coculture of AMs and alveolar type II cells, or coculture of AMs and lung fibroblasts, in contact cultures or Transwell chambers, revealed no synergistic effect. Therefore, such interaction does not explain the effects seen in vivo. Identification of the intercellular communication in vivo is still unresolved. However, fibroblasts appear to be an important source of inflammatory mediators in the lung. Key words: alveolar macrophages, alveolar type II cells, cytokines, fibroblasts, gene expression, lung, silica. Environ Health Perspect 112:1679–1685 (2004). doi:10.1289/ehp.7295 available via http://dx.doi.org/ [Online 16 August 2004]

Materials and Methods

Animals. The animals used in these experiments were specific pathogen-free Sprague-Dawley rats [H:L:A:SD/CVF; Hilltop Laboratories, Scottdale, PA] weighing 250–300 g (~8 weeks old at arrival). The animals were housed in an environmentally controlled facility that was accredited by the Association for Assessment and Accreditation of Laboratory Animal Care. The rats were monitored to be free of endogenous viral pathogens, parasites, mycoplasmas, Helicobacter, and cilia-associated respiratory bacilli. Rats were acclimated for at least 5 days before use and were housed in ventilated cages, which were provided with HEPA-filtered air and used Alpha-Dri virgin cellulose chips (Shepherd Specialty Papers, Watertown, TN) and hardwood Beta chips (NEPCO, Warrensburg, NY) as bedding. The rats were maintained on 2018S Teklad Global 18% rodent diet (Harlan Teklad, Madison, WI) and tap water, both of which were provided ad libitum.

Reagents. Rat cytokine kits for IL-6, MCP-1, MIP-2, and TNF-α were obtained from Biosource (Camarillo, CA). Lactate dehydrogenase (LDH) was measured within 24 hr on refrigerated samples with a COBAS MIRA Plus analyzer (Roche Diagnostics, Indianapolis, IN) using kits from Roche. Lipopolysaccharide B (LPS; from E. coli 026:B6) was obtained from Difco Laboratories (Detroit, MI). The culture medium consisted of Dulbecco’s modified Eagle medium (BioWhittaker, Walkersville, MD), 1 mM glutamine (Sigma, St. Louis, MO), 10 mM N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (HEPES; Sigma), 100 U/mL penicillin–streptomycin (GIBCO Life Technologies, Grand Island, NY), 100 µg/mL kanamycin (GIBCO), and 10% (vol/vol) heat-inactivated fetal bovine serum (GIBCO).

Source of silica. We obtained MIN-U-SIL 5 from U.S. Silica (Berkeley Springs, WV). It was examined by proton-induced X-ray emission spectrometry for inorganic contaminants and for desorbable organic compounds by gas chromatography mass spectroscopy. The results of these analyses

Address correspondence to K.M.K. Rao, Box 2015, PPRB/HELD/NIOSH, 1095 Willowdale Road, Morgantown, WV 26505 USA. Telephone: (304) 285-6169. Fax: (304) 285-9398. E-mail: mir8@cdc.gov

The authors declare they have no competing financial interests.

Received 28 May 2004; accepted 16 August 2004.
have been reported elsewhere (Porter et al. 2001). Silica samples were found to be > 99% pure quartz. Mean particle count diameter, determined by scanning electron microscopy, was 2.14 μm, with 99% of the particles < 5 μm. Silica was weighed and dry heated at 170°C for 24 hr to sterilize. Sterile medium was then added to the silica, which was vortexed into suspension before being added to the cell culture.

Isolation of AMs. The animals were anesthetized with pentobarbital sodium (150 mg/kg body weight) and exsanguinated by cutting the abdominal aorta. AMs were obtained by bronchoalveolar lavage (BAL) according to the method of Myrvik et al. (1961). The lungs from each animal were lavaged eight times with 5 mL phosphate-buffered medium (145 mM NaCl, 5 mM KCl, 9.4 mM Na2HPO4, and 1.9 mM NaH2PO4, pH 7.4) per gram lung weight. The cells were separated from the lavage fluid by centrifugation at 300 × g for 5 min and then washed three times by alternate centrifugation and resuspension in phosphate-buffered medium. The cells were then resuspended in the culture medium for use in all experiments. Cell number was determined by an electronic cell counter (model ZB; Coulter Electronics, Hialeah, FL).

Isolation of type II cells. We isolated type II cells as described previously (Miles et al. 1997). Briefly, the procedure involves perfusing the lung to remove blood, removing free AMs by BAL, digestion of lung tissue with elastase, and purification of type II cells by centrifugal elutriation. Cells isolated and purified by this method were > 85% pure type II cells as determined microscopically after staining with phosphine 3R (Jones et al. 1982).

The cells were cultured on collagen gels similar to those described by Lee et al. (1984) for growing hamster tracheal epithelial cells. Collagen gels were prepared from stock solution of collagen type I from rat tail (Sigma-Aldrich, St. Louis, MO) dissolved in 1:1,000 dilution of acetic acid in sterile distilled water overnight at 4°C. A six-well plate was layered with 0.775 mL (each well) of ice-cold collagen gel mixture consisting of 0.5 mL collagen stock, 0.15 mL 10× modified Eagle medium, and 0.125 mL 0.5 NaOH. The mixture was allowed to polymerize for 4 hr at a humidified atmosphere of 5% CO2 at 37°C. The polymerized collagen gels were washed with 1 mL epithelial cell growth medium before cells were plated and grown overnight.

Isolation of lung fibroblasts. We isolated lung fibroblasts as described by Reist et al. (1991). Briefly, the lungs were perfused with normal saline, lavaged with phosphate-buffered saline (PBS) containing 0.1% glucose, and sectioned four times at 0.5-mm intervals with a McIlwain tissue chopper. The chopped lung tissue from a single rat was digested in 20 mL of HEPES-buffered solution (145 mM NaCl, 5 mM KCl, 1 mM CaCl2, 505 mM glucose, and 10 mM HEPES, pH 7.4), containing collagenase (0.1%), elastase (40 U/mL), bovine serum albumin (0.5%), and DNAse (0.018%) in a shaker water bath for 30 min at 37°C. The digested mixture was filtered through two layers of sterile gauze that had been washed with culture medium. The cells were sedimented by centrifugation and plated in six-well culture plates. The medium was changed 24 hr later, and the cells were allowed to grow to confluence.

Coculture of type II cells and AMs. Type II cells cultured overnight on collagen gels in six-well plates (catalog no. 353046; tissue culture treated by vacuum gas plasma, polystyrene, nonpyrogenic; Becton Dickinson, Franklin Lakes, NJ), as described above, were incubated for an additional 4 hr at 37°C in a CO2 incubator with freshly isolated AMs (1 million cells) with or without silica. Controls were type II cells alone with or without silica. The collagen gels were dissolved in a solution containing 1 mg of Sigma blend collagenase type F made up in 1 mL of type II cell growth medium for each well to be dissolved. The cells were then spun down and used for isolation of total RNA.

Coculture of lung fibroblasts and AMs. Lung fibroblasts were cultured until they became confluent. The cells were trypsinized and 2 × 10⁶ cells were plated in six-well plates. After overnight culture, freshly isolated AMs (2 × 10⁶ cells) were added to the wells and cultured for an additional 4 hr with or without silica. Controls were fibroblasts alone with or without silica. The culture medium was aspirated and spun down, and the supernatant was stored at –80°C. The cells were scrapped and combined with the cell pellet from the above step and used for isolation of total RNA.

Transwell experiments with fibroblasts and AMs. To measure messenger RNA (mRNA) expression in separated cell populations and to study the interaction of soluble mediators released by cell populations on each other, we conducted experiments in Transwell chambers (Costar, Corning, NY). For these experiments, cultured lung fibroblasts were trypsinized, and 1 million cells were plated in the outer well of a Transwell plate and cultured for an additional 24 hr. At the end of the 24-hr period, freshly isolated AMs (1 million cells) were placed in the inserts. Silica was added either to the macrophages in the inner wells or to the fibroblasts in the outer well and incubated for 4 hr. Total RNA was isolated from each population separately.

Preparation of AM- and polymorphonuclear neutrophil–enriched fractions. We obtained AM- and polymorphonuclear neutrophil (PMN)–enriched fractions from BAL fluid obtained from rats treated with silica in vivo, as described by Huffman et al. (2003). Briefly, the method consisted of layering BAL

Table 1. Primer sets used.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primers</th>
<th>Product (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM-CSF</td>
<td>Sense: GAC ATG CTT GCT CTT GAG AAC G</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Antisense: GGA ATT GAG TTT GGT GAT GTC</td>
<td></td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Sense: AAT CTT ACC TGC AGG CCG AAG G</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Antisense: GGA CCT AAA GGC AGC GCA GCT G</td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>Sense: AGC TTC ACG GGC AAG ACA TAG G</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Antisense: GGA TGG CTT CCA AGC CCT TGA C</td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>Sense: CCC AAC TTC CAA TGC TCT OCT AAT G</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Antisense: GCA CAT TAG GTT TGC CGA GTA GAC C</td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td>Sense: GGC TCA GCA CTA CGT TGA G</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Antisense: AGC ATG GTC TGG CTT ACT G</td>
<td></td>
</tr>
<tr>
<td>INOS</td>
<td>Sense: GTC ACC TAT CCG ACC CCA GAT G</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Antisense: GCC ACT GAC ACT CGG CAC AAA G</td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>Sense: TCA CGC TGG GCC TGT TG</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Antisense: CAG CGG CAT TGC GAT CAT C</td>
<td></td>
</tr>
<tr>
<td>MIP-2</td>
<td>Sense: GGC AAG GCT AAG TCA GGT GAA G</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Antisense: CAC ATG AGG CAT GTC CGC TCT</td>
<td></td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Sense: GCT AAT GGT GGC CGA CAA CAC G</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Antisense: TGC CAG TGC CGT AAT GTC</td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td>Sense: CGT CAG CCG ATT TGC CAT TTC</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Antisense: TGG CTC CAT ACC AGG CTA TGC G</td>
<td></td>
</tr>
<tr>
<td>18S rRNA</td>
<td>Sense: GGA CGA GCG CTA AAG CAT TCC G</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Antisense: CGC CAG TCG CGA TCG TGT ATG</td>
<td></td>
</tr>
</tbody>
</table>

*Significantly greater than control, p < 0.05.

Figure 1. mRNA expression in AMs stimulated in vitro with silica (200 µg/mL) at 4 hr postexposure. Error bars represent fold increase above control (mean ± SE of at least four experiments for each cytokine).
cell populations obtained by lavage onto a Histopaque double-density gradient composed of equal amounts of Histopaque 1083 and Histopaque 1119 (Sigma). The gradients were then centrifuged (400 × g, 30 min, room temperature). The AM-enriched fraction localized at the interface between PBS diluent and Histopaque 1083, and the PMN-enriched fraction was located at the bottom as a pellet. This method yields about 60% AMs in the AM-enriched fraction and 90% PMNs in the PMN-enriched fraction (Huffman et al. 2003).

Measurement of cytokines. We measured the cytokines in culture supernatants after a 24-hr incubation with either 200 µg/mL silica or 1 µg/mL LPS. IL-6, MCP-1, MIP-2, and TNF-α were measured by ELISA kits according to manufacturer instructions (Biosource International, Camarillo, CA). The values were expressed as nanograms or picograms per million cells. For measurement of cytokines in the BAL fluid, lavage fluid from the first wash was collected and spun down to sediment the cellular elements. The supernatant was stored at −80°C for later measurement of cytokine levels by ELISA.

Quantitation of mRNAs by RT-PCR. We measured cytokine mRNA levels using a SYBR Green PCR kit with the ABI 5700 Sequence Detector (PE Applied Biosystems, Foster City, CA). Total RNA was isolated using RNAqueous 4PCR kits (Ambion, Austin, TX) from AMs (≈ 2 million cells) or lung tissue after alveolar lavage (≈ 50 mg wet tissue). One to two micrograms of the DNAse I–treated RNA was reverse transcribed, using Superscript II (Life Technologies, Gaithersburg, MD). The complementary DNA generated was diluted 1:100, and 15 µL was used to conduct the PCR reaction according to the SYBR Green PCR kit instructions. The comparative C T (threshold cycle) method was used to calculate the relative concentrations (User Bulletin no. 2; ABI PRISM 7700 Sequence Detector, PE Applied Biosystems). Briefly, the method involves obtaining the C T values for the cytokine of interest, normalizing to a housekeeping gene (18S in the present case), and deriving the fold increase compared with the control, unstimulated cells. Table 1 lists the primer sets used for these experiments. In preliminary experiments, the products were analyzed by gel electrophoresis, and a single product was obtained with each primer set. In addition, dissociation curves yielded single peaks.

In vitro experiments. All experiments were performed on pooled AMs from several animals. AMs were placed in six-well plates, incubated for 2 hr at 37°C, and washed to remove nonadherent cells. Then the cells were incubated with silica (200 µg/mL) or LPS (1 µg/mL) for 4 hr for mRNA measurements, or 24 hr for the measurement of inflammatory cytokines.

In vivo experiments. Rats were anesthetized with an intraperitoneal injection of 30–40 mg/kg body weight sodium methohexital (Brevital; Eli Lilly and Company, Indianapolis, IN) and were intratracheally instilled using a 20-gauge 4-inch ball-tipped animal feeding needle. Silica (MIN-U-SIL 5) was suspended in endotoxin-free, Ca2+/Mg2+-free PBS (BioWhittaker, Walkersville, MD), and rats received either 2 mg silica/100 g body weight or an equivalent volume of PBS. The animals were sacrificed 4 hr postexposure, and AMs were isolated as described above. The lavaged lung tissue was used for isolation of total RNA.

Statistical methods. A paired t-test was used for in vitro experiments. A t-test assuming unequal variance or a Z-test for means was used to evaluate the in vivo data. The significance was set at < 0.05.

Results

Effects of silica treatment on cell viability. In initial experiments, the effect of silica treatment (200 µg/mL) on cell viability was assessed by measuring the release of LDH into the medium at the end of the 4-hr incubation time. The means ± SEs (U/L) for control versus silica-treated cells (n = 3) were, for fibroblasts, 49 ± 14 versus 49 ± 15; for type II cells, 87 ± 9 versus 14 ± 7; and for macrophages, 101 ± 13 versus 100 ± 7.

Effects of silica or LPS on mRNA expression in AMs in vitro. AMs were stimulated with either 200 µg/mL silica or 1 µg/mL LPS for 4 hr. The expression of 10 genes, implicated in the induction of an inflammatory response, was measured by real-time RT-PCR. The message levels of only three cytokines (MCP-1, MIP-2, and IL-6) showed a significant increase at 4 hr after in vitro exposure to silica (Figure 1). In contrast, mRNA levels for GM-CSF, ICAM-1, IL-1β, IL-10, iNOS, TGF-β1, and TNF-α were not significantly elevated after this treatment.

To compare the effect of silica with that of bacterial endotoxin, LPS, we also measured mRNA levels of these inflammatory mediators in AMs stimulated with LPS for 4 hr in vitro (Figure 2). LPS stimulation increased message levels of IL-1β, IL-6, GM-CSF, iNOS, MCP-1, MIP-2, and TNF-α but not those of ICAM-1, IL-10, and TGF-β1.

Effects of in vivo silica treatment on mRNA expression in cells obtained by BAL. Figure 3 shows the mRNA expression in cells isolated from rats 4 hr after intratracheal instillation of silica (2 µg/100 g body weight). The three cytokines that showed an increase at 4 hr in vitro (IL-6, MCP-1, and MIP-2) also showed an increase in vivo. In addition, the expression of four other genes (GM-CSF, IL-1β, IL-10, and iNOS) was increased. Three genes (TGF-β1, TNF-α, and ICAM-1) showed no change either in vitro or in vivo.

Effects of silica on mRNA expression in the lung tissue after intratracheal instillation. We also measured cytokine expression in the lavaged lung tissue 4 hr after the intratracheal instillation of silica (Figure 4). The results were mostly similar to those seen in AMs (Figure 3). There was a significant increase in the message levels of GM-CSF, IL-1β, IL-6, iNOS, MCP-1, MIP-2, and TNF-α. No increase was seen for ICAM-1, IL-10, and TGF-β1.

mRNA expression of cytokines in AM-enriched and PMN-enriched fractions. One major difference between cells obtained by BAL from control rats versus silica-treated rats is the presence of a large number of PMNs in the silica-treated animals. One explanation for the differences seen in gene expression after
in vitro and in vivo exposure may be that the neutrophils produce additional cytokines not seen with AMs alone. To determine the role of PMN in mRNA expression after silica treatment, we obtained AM-enriched and PMN-enriched fractions from BAL fluid of animals treated with silica in vitro. The mRNA levels were expressed in relation to the expression levels in relation to AMs. These AMs have been exposed to silica in vitro and express high levels of mRNA, as shown in Figure 3. The mRNA expression in AMs was assigned an arbitrary value of 1 for Figure 5. Figure 5 shows that mRNA expression of the seven cytokines studied was essentially the same in the two fractions, indicating that PMN enrichment is not the cause for differences between in vitro and in vivo treatments.

Cytokine/chemokine expression at the protein level. We measured the levels of four cytokines/chemokines (IL-6, MCP-1, MIP-2, and TNF-α) in the supernatants of AM cultures after 4 hr incubation with either silica or LPS. There was no increase in the protein levels of these mediators with silica, but LPS produced very high levels of these cytokines/chemokines (Figure 6A–D). There was no increase in these cytokines/chemokines (IL-6, MCP-1, and MIP-2) were increased in the alveolar lavage fluid when the animals were exposed to silica for 4 hr in vivo (Figure 7). There was no increase in TNF-α levels 4 hr after exposure to silica either in vitro or in vivo (data not shown).

Coculture of type II cells and AMs on gene expression. To determine whether the differences seen in mRNA expression in AMs exposed to silica in vitro and in vivo may be related interaction between AMs and type II cells, we performed coculture experiments. We focused on four genes that were up-regulated only after in vivo exposure. Table 2 shows the expression of these four genes in cocultures of AMs and type II cells. Essentially, there was no difference in the expression of these genes when the cells were cocultured with or without silica. These results indicate that the expression of these inflammatory mediators is not mediated by interaction between AMs and type II cells.

Figure 5. mRNA expression in separated AMs and PMNs isolated from animals at 4 hr after intratracheal instillation of silica (2 mg/100 g body weight). Error bars represent fold increase above control (mean ± SE) in the message levels from three different animals.

Table 2. Relative mRNA expression in AMs and type II alveolar epithelial cell cocultures stimulated with silica (St, 200 µg/mL) for 4 hr.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>AM</th>
<th>AM + Si</th>
<th>Type II</th>
<th>Type II + Si</th>
<th>AM + type II</th>
<th>AM + type II + Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>1.47 ± 0.53</td>
<td>0.87 ± 0.34</td>
<td>0.61 ± 0.41</td>
<td>0.41 ± 0.27</td>
<td>1.10 ± 0.60</td>
<td>1.03 ± 0.49</td>
</tr>
<tr>
<td>IL-10</td>
<td>1.04 ± 0.13</td>
<td>0.30 ± 0.11</td>
<td>2.58 ± 1.01</td>
<td>5.74 ± 2.62</td>
<td>1.41 ± 1.46</td>
<td>2.21 ± 2.32</td>
</tr>
<tr>
<td>iNOS</td>
<td>1.04 ± 0.12</td>
<td>0.67 ± 0.24</td>
<td>0.49 ± 0.23</td>
<td>0.44 ± 0.16</td>
<td>1.75 ± 1.83</td>
<td>1.93 ± 1.47</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>1.13 ± 0.27</td>
<td>1.00 ± 0.34</td>
<td>2.02 ± 1.19</td>
<td>3.88 ± 2.38</td>
<td>3.49 ± 0.71</td>
<td>5.01 ± 3.20</td>
</tr>
</tbody>
</table>

Values are mean ± SE from at least three different experiments relative to mRNA levels in AMs.
in protein synthesis (210 ± 75 vs. 231 ± 62, control vs. silica, n = 7). This is similar to that seen in AMs. We did not measure the GM-CSF protein levels.

Gene expression in AMs and fibroblast cocultures. Table 3 shows the relative expression of the five genes in coculture experiments. Although coculture of AMs and lung fibroblasts seems to enhance iNOS and IL-10 mRNA levels seen over and above that seen with each cell type alone, the results were too variable to draw a definitive conclusion concerning a synergistic effect. With regard to IL-6 and GM-CSF, the main source seems to be fibroblasts, but results were too variable to conclude whether cocultures with or without silica enhance the mRNA levels.

mRNA expression in AMs and lung fibroblasts in Transwell experiments. The coculture experiments do not allow determination of mRNA expression in individual cell types. Therefore, we conducted Transwell experiments to isolate RNA from each cell type and to study the roles of cell–cell contact versus soluble mediators in these interactions (Table 4). Two conclusions can be drawn from these experiments: First, there is no difference in the mRNA levels of IL-1, IL-10, and iNOS under the different conditions tested; and second, the main sources of IL-6 and GM-CSF are lung fibroblasts. Although AMs seem to enhance IL-6 and GM-CSF mRNA levels in fibroblasts, the extreme variation in the results does not permit a definitive conclusion.

Combining the observations from coculture experiments and Transwell experiments, it appears that factors in addition to cell–cell contact and soluble mediators secreted by these two cell types are involved in regulating the inflammatory mediators in *in vivo* situations.

Discussion

Exposure to silica causes inflammatory and fibrotic lung disease (Hnizdo and Vallyathan 2003). Silica-induced inflammatory response has been implicated in the pathogenesis of fibrosis. In this study, we measured expression of 10 genes that are involved in regulating the inflammatory processes in the lung, at the mes-}

<table>
<thead>
<tr>
<th>Gene</th>
<th>AM</th>
<th>AM + Si</th>
<th>Fibro</th>
<th>Fibro + Si</th>
<th>AM + Fibro</th>
<th>AM + Fibro + Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>1.03 ± 0.08</td>
<td>0.71 ± 0.12</td>
<td>0.08 ± 0.07</td>
<td>0.31 ± 0.29</td>
<td>1.49 ± 0.46</td>
<td>2.41 ± 0.91</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.16 ± 0.11</td>
<td>1.04 ± 0.16</td>
<td>0.33 ± 0.17</td>
<td>0.78 ± 0.40</td>
<td>25.8 ± 15.8</td>
<td>26.8 ± 13.4</td>
</tr>
<tr>
<td>iNOS</td>
<td>1.14 ± 0.11</td>
<td>0.83 ± 0.19</td>
<td>0.58 ± 0.33</td>
<td>1.54 ± 0.93</td>
<td>8.22 ± 3.54</td>
<td>16.2 ± 9.95</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>1.23 ± 0.21</td>
<td>1.08 ± 0.17</td>
<td>18.4 ± 7.0</td>
<td>58.9 ± 22.4</td>
<td>6.44 ± 2.4</td>
<td>58.0 ± 43.7</td>
</tr>
</tbody>
</table>

Values are mean ± SE from at least three different experiments relative to mRNA levels in AMs.

Table 4. Relative mRNA expression in AMs and lung fibroblast (fibro) cocultures stimulated with silica (Si; 200 µg/mL) for 4 hr.

Insert/well

<table>
<thead>
<tr>
<th>Gene</th>
<th>AM/ fibro</th>
<th>AM/ fibro + Si</th>
<th>AM/ fibro + Si + fibro</th>
<th>AM/ fibro</th>
<th>AM/ fibro + Si</th>
<th>AM/ fibro + Si + fibro</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>1.0 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>4.7 ± 2.5</td>
<td>3.1 ± 2.5</td>
<td>1.1 ± 0.5</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.7 ± 0.1</td>
<td>912 ± 565</td>
<td>1.1 ± 0.8</td>
<td>14,487 ± 11,702</td>
<td>16 ± 9.6</td>
<td>3,009 ± 1,344</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.4 ± 0.4</td>
<td>1.6 ± 0.6</td>
<td>3.2 ± 0.6</td>
<td>3.5 ± 2.0</td>
<td>0.8 ± 0.5</td>
<td>1.3 ± 1.1</td>
</tr>
<tr>
<td>iNOS</td>
<td>0.8 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>2.6 ± 1.4</td>
<td>3.4 ± 1.6</td>
<td>3.9 ± 2.8</td>
<td>1.9 ± 1.5</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>1.0 ± 0.3</td>
<td>4.2 ± 1.9</td>
<td>2.1 ± 0.7</td>
<td>41.8 ± 24</td>
<td>16.0 ± 9.9</td>
<td>42.3 ± 39</td>
</tr>
</tbody>
</table>

Values are mean ± SE from at least three different experiments relative to mRNA levels in AMs.

Source of the cells in which the mRNA levels were measured.
development of fibrosis (Piguet et al. 1990). In our studies, we did not observe any increase in mRNA in AMs for TNF-\(\alpha\) at 4 hr in vitro or at 4 hr in vivo. However, there was an increase in the mRNA expression in TNF-\(\alpha\) in the lung tissue 4 hr after intratracheal instillation of silica.

The cytokine TGF-\(\beta\)1 and the adhesion molecule ICAM-1 have also been implicated in the pathogenesis associated with silica exposure (Matrat et al. 1998; Nario and Hubbard 1996). We have not detected any increase in the message levels of these two genes after either in vitro or in vivo silica exposure. TGF-\(\beta\)1 is shown to be critical in acute lung injury (Pittet et al. 2001) but may not play a role in particle-induced lung disease, at least in the initial stages. ICAM-1 has been shown to be up-regulated in LPS-induced lung inflammation (Madjdpour et al. 2000; Nathms et al. 1998). LPS stimulation in vitro has been shown to increase ICAM-1 expression both in AMs (Grigg et al. 1994) and in the lung tissue (Nathms et al. 1998). There was no increase in ICAM-1 message in AMs after in vitro exposure to silica or LPS in the present study. A third gene that did not show any change with LPS was IL-10. Our findings are consistent with previous findings that there is no up-regulation of TGF-\(\beta\)1 in AMs (Xing et al. 1994) or IL-10 in lung tissue (Johnston et al. 1998) after LPS stimulation. With regard to ICAM-1, an increase was demonstrated in AMs after in vivo exposure to LPS (Grigg et al. 1994). We evaluated ICAM-1 in AMs after only in vitro exposure.

We observed significant increases in the mRNA levels of IL-6 and genes for two chemokines (MCP-1 and MIP-2) at 4 hr after in vitro treatment with silica. Although the message levels showed an increase, there was no increase in the protein levels measured in the supernatants of the cultures at 4 hr. However, when silica was administered intratracheally, there was considerable increase in both message levels and protein levels at 4 hr. Our findings with regard to the production of MCP-1 and MIP-2 are consistent with previous observations demonstrating an increase in these two chemokines after silica exposure (Driscoll 2000; Driscoll et al. 1998; Hubbard et al. 2002). The observation that the in vitro treatment up-regulates the message levels without increasing the protein levels, but in vivo both message levels and protein levels go up, indicates that cell–cell interactions and/or other influences might play an important role in the expression of these cytokines at the protein level.

The Transwell experiments revealed that a major source of IL-6 and GM-CSF in the lung could be lung fibroblasts. When mRNA levels were expressed relative to AMs (Table 4), the IL-6 levels in lung fibroblasts were several hundred-fold higher than those in AMs. Similarly, mRNA levels of GM-CSF were much higher in fibroblasts compared with AMs. Further, the number of fibroblasts (interstitial cells) is 10-fold higher than AMs in the lung tissue (Stone et al. 1992). These observations indicate that the fibroblasts are a major source of these inflammatory mediators in the lung.

MCP-1 has significant involvement in the inflammatory disorders of the lung (Rose et al. 2003). It has been shown to regulate alveolar epithelial cell inhibition of fibroblast proliferation (Moore et al. 2002). In addition to monocytes, fibroblasts are an important source of MCP-1 (Galindo et al. 2001; Hao et al. 2003). We found MCP-1 mRNA levels were several-fold higher in lung fibroblasts compared with AMs (data not shown). Therefore, the main source of both IL-6 and MCP-1 in the BAL fluid after silica exposure could be lung fibroblasts. This is consistent with the observation that silica can directly stimulate lung fibroblasts (Arcangeli et al. 2001; Baroni et al. 2001). We have not evaluated the sources of MIP-2 in this study.

GM-CSF is purported to play an important role in numerous respiratory illnesses, including asthma (Xing et al. 1996). It is generated by a variety of lung cell types (Bergman et al. 2000; Blau et al. 1994; Christensen et al. 2001; Churchill et al. 1992; Fitzgerald et al. 2003; O’Brien et al. 1998; Smith et al. 1990; Soloperto et al. 1991; Trappell and Whitsett 2002). GM-CSF was not produced by AMs when stimulated with silica in vitro, but an increase in message levels were seen in both BAL cells and lung tissue after intratracheal instillation. This confirms the reported need for cell–cell interactions in the up-regulation of GM-CSF (Fitzgerald et al. 2003).

The importance of cell–cell interactions in the production of inflammatory mediators has been emphasized in several studies. Direct contact between human peripheral blood mononuclear cells and renal fibroblasts facilitates the expression of MCP-1 (Hao et al. 2003). Similarly, macrophage/fibroblast interactions are important for the production of GM-CSF (Fitzgerald et al. 2003). Both soluble mediators and adhesion molecules have been implicated in these interactions (Hao et al. 2003; Zickus et al. 2004). The lack of effect on the expression of several genes in coculture experiments with contact or without contact (Transwell experiments) indicates that some additional factors may be involved in the regulation of cytokine production in the lung after silica exposure. During inflammation a variety of cells are recruited into the lung and a number products are generated. Any one of these factors may influence the expression of inflammatory mediators. In this regard, it is important to keep in mind the role of lung surfactant.

Lung surfactant is known to modulate immune functions in the lung (Wright 1997); we mention its role in particular because we have some preliminary data to suggest that lung surfactant may enhance cytokine production in the lung fibroblasts.

In summary, we found that exposure of AMs to silica in vitro up-regulates only three genes (IL-6, MCP-1, and MIP-2). However, in BAL cells harvested after intratracheal instillation of silica, for four additional genes (IL-1, IL-10, iNOS, and GM-CSF) were up-regulated. Cocultures of AMs with alveolar epithelial type II cells or lung fibroblasts did not enhance mRNA level of the four additional genes that were expressed after in vitro exposure. There is need to evaluate the role of other mediators in regulating the production of inflammatory mediators in the lung, perhaps the role of lung surfactant. Most of the studies concerning silica-induced inflammatory processes in the lung have been focused on the role of AMs; our Transwell studies show that lung fibroblasts are an important source of IL-6 and GM-CSF. These observations indicate that the fibroblast-derived inflammatory mediators may also play an important role after silica exposure.

REFERENCES

Driscoll KE. 2000. TNF-\(\kappa\) and MIP-2: role in particle-induced

tion of crystalline silica: NF-κB activation, inflammation, cytokine production, and damage. Inhal Toxicol 15:49–58.

Williams AO, Saffioti U. 1995. Transforming growth factor beta1, ras and p53 in silica-induced fibrogenesis and carcinogene-

