Building a Case for Cooperation in Residual Management
Caribbean Water & Wastewater Association
September 29 - October 3, 2003
Atlantis, Paradise Island, The Bahamas

Authors:
Kev L. Metcalfe, P.Eng.
Norm J. Nuttall, P.Eng.
Stantec Consulting International Ltd.
Solid Waste
Liquid Waste
Gases

“Residual Management”
Project Organization

I thought you were making the door!
Technology Evolution

- Dumps
- Simple Lagoons
- Engineered Sanitary Landfills
- Complex Mechanical Treatment Plants

Higher Level of Environmental Protection
Cooperative Approach

Environmental Benefits

Economic Benefits

Risk Management Benefits

Result: Improved Operation and Reduced Costs
Residuals (Liquids, Gases & Bio-solids)

- Leachate from landfills that have a collection system
- Landfill gas generated from the decomposition of wastes
- Sludge from septic treatment systems
- Screenings from primary sewage and septage facilities
- Sludge from sewage treatment plants
Leachate

- Leachate is the product of free water in landfills leaching contaminants from the waste it has been in contact with.

- The formation of leachate occurs after it has reached its field capacity moisture content.

Leachate collection manhole
Leachate Generation

Estimated Quantity of Leachate Generated

Estimated Quantity of Leachate Requiring Treatment and Disposal
Landfill Gas

![Graph showing generation rate over time for different cells with CO and NH₄ labels.]
Septage

- Cell 1 Anaerobic
- Cell 2 Anaerobic
- Cell 3 Aerobic
- Grit, Rags, Sludge (<5% solids)
- Effluent for Disposal
Screenings

- Product of the preliminary fine screening of domestic sewage
- Organic and inorganic
- 40 to 60% solids
- Disposal to cells
Sewage Sludges

- Residual from either a primary or secondary sewage treatment process
- Very coarse
- High organic and inorganic solids
- 3 to 5% solids
Other Residuals

- Grease from food preparation
- Used motor oil
- Sludges from car washes
- Blood and by-products from abattoirs
- Manure
- Petroleum contaminated soils
Disposal Options for Residuals

Leachate

1. Anaerobic / Aerobic lagoons with mechanical aeration
 ➢ *Effective treatment*

2. Recycle leachate by re-circulating it through the landfill
 ➢ *Increased waste decomposition of solid waste in landfill*
 ➢ *Reduced strength of leachate*
Disposal Options for Residuals

Landfill Gas

- Collected and flared or used to produce energy
- Passive venting
- Re-circulation of leachate can affect rate of gas generation
- Approximately 40 to 80 tonne per day landfill site could generate 1 MW of energy
Disposal Options for Residuals

Septage

- Series of lagoons: settling pond, anaerobic and aerobic
- Sludge disposal
Disposal Options for Residuals

Sewage Sludge

Primary Treatment Sludge:
- Direct disposal to dedicated cells on site
- Primary digestors at treatment plant

Secondary Treatment Sludge:
- Co-composting
- Landfarming
- Lagoons
Disposal Options for Residuals

Screenings:

- Dedicated cells
- Landfilled
- Co-composting
Co-Disposal Options

- Numerous Options:
 - Bioreactor Landfill
 - Co-composting

- Environmental and Economic Benefits

- Challenge: Different Operating Agencies

Cooperation?
Bioreactor Landfill

- Designed to rapidly change and biodegrade organic component of solid waste stream
- Adding sufficient liquids and air
- Aerobic, Hybrid and Anaerobic

Waste Age, Phil O’Leary & Patrick Walsh, June 2002, p.64
Bioreactor Landfill

Most Easily Adapted to Caribbean: Anaerobic

- Moisture content most important aspect
- Upwards of 65%
- Leachate, storm-water, screenings, sewage sludge, septage and waste treatment effluents
- Accelerated decomposition, reduced leachate treatment and disposal costs, reduced need for leachate treatment facilities, reduced post closure costs and increased landfill gas generation
Co-Composting

- Organic waste supplemented with a range of materials
- Carbon to Nitrogen Ratio (C:N) key
- Simple windrow facility to enclosed reactor
- Successful co-composting mixtures:
 - MSW organics / secondary sewage sludge
 - Septage solids / wood chips
 - Abattoir wastes / yard wastes
 - Chicken manure / yard wastes
 - MSW organics / septic tank pump out waste
 - MSW organics / fishery wastes
Typical Small Island State Operations

- Leachate: left in the landfill, treated, recycled or released
- Landfill Gas: ignored, passively vented
- Septage: lagoon treatment, effluent discharged
- Screenings: landfilled, dedicated disposal cells
- Sewage Sludge: stored, land spread
- Other Residuals: uncontrolled
Caribbean Case Study

New Providence

New Providence Sanitary Landfill
- Operated by DEHS
- 60 mil HDPE Liner
- Leachate Collection
- Gas Collection Piping Installed

Septage & Sludge Facility
- Operated by W&SC
- HDPE Liner
- Treats waste from septic tank pumpouts
Present Situation

- Landfill Leachate
- Treatment (Lagoons - Future)
- Liquid Disposal (Deep Well)

- Septage & Sludge
- Lagoons (Anaerobic/Aerobic)
- Liquid Disposal (Deep Well)

- Drying Beds (Future)
Cooperative Approach

- Septage & Sludge
 - Landfill
 - Landfill Leachate
 - Lagoons (Anaerobic/Aerobic)
 - Recirculate
 - Liquid Disposal (Deep Well)
 - Solids Disposal (Landfill)

Or
Conclusion: Real World?

- Solutions can appear very simple on paper yet a little more complicated to implement in the real world.
- On a daily basis, landfills, sewage treatment plants and septage and sludge facilities throughout the Caribbean continue to operate and generate residuals.
- The responsibility for cost effective business practices rests on the shoulders of the General Managers and the Directors of these operating entities.
Conclusion

- It can be concluded that there is merit in investigating cooperative solutions that could result in cost savings, a higher level of environmental protection and reduced risk.

- The benefits are numerous:
 - Residuals from one stream could benefit another system resulting in a useable end product.
 - Capital and operating costs could be reduced.
 - Risk of damage to the environment from the mismanagement of these residuals could be prevented.
Thank you