PROGRAMA REGIONAL OPS/HPE/CEPIS
DE MEJORAMIENTO DE CALIDAD DE
AGUA PARA CONSUMO HUMANO

BANCO NACIONAL DE LA HABITACION

MANUAL DE ORIENTACION PARA SISTEMAS DE
ABASTECIMIENTO DE AGUA EN PEQUEÑAS COMUNIDADES
DESINFECCION DE AGUA

Trabajo elaborado por el
CENTRO DE TECNOLOGIA Y SANEAMIENTO BASICO (CETESB)
BRASIL

SEMINARIO SOBRE DESINFECCION DE AGUA
PARA ABASTECIMIENTOS RURALES
LIMA-PERU, 4 al 8 de julio de 1983
1. INTRODUÇÃO

A desinfecção é um processo dos mais importantes, dentro do capítulo de tratamento de água de abastecimento, como meio de controle sanitário. A priori, julgamos que todas as águas de abastecimento, independentes da sua origem e/ou tratamento de clarificação e que tenham sido submetidas, sejam desinfetadas. Tal fato se faz necessário pois como se sabe já é do domínio na área de saneamento que a água está permanentemente sujeita a contaminação durante a sua distribuição. Constituem como principal foco os reservatórios domiciliares, normalmente mantidos sem nenhum cuidado.

Existem vários produtos desinfetantes, cada um com suas vantagens e desvantagens. Por ora, optamos pelo uso do cloro e seus derivados, uma vez que continuam sendo os mais utilizados, e cuja técnica de aplicação é largamente conhecida.

O comércio oferece produtos de cloro e seus derivados nas seguintes formas: cloro líquido em cilindros de aço, cloreto de cálcio, hipoclorito de sódio e hipoclorito de cálcio em pó, granulado e em pastilhas.

Pelo estudo ora desenvolvido, conclui-se que para vazões superiores a 12 l/s é mais conveniente a utilização de cloro líquido. Para vazões menores, pela ordem crescente de custo, temos a cal clorada e hipoclorito de sódio. Outros produtos, encarregem demasiadamente o processo. No entanto, poderão ser utilizados desde que as condições locais assim o justifiquem. A utilização da cal clorada e hipoclorito de sódio para vazões superiores a 12 l/s embora torne o processo mais oneroso, é recomendável nos sistemas por exemplo, em que não existam tratamento convencional.

Como forma de aplicação do cloro líquido, fica condicionada a utilização do aparelho clorador próprio para esta finalidade, sendo mais vantajoso, o tipo a vácuo com solução que é o mais tradicionalmente usado. Caso haja dificuldades em pressurizar a água requerida por este equipamento, recomenda-se a utilização do tipo direto.

Para a aplicação de derivados de cloro, por suas inúmeras vantagens, momentaneamente se tratando de comunidades de pequeno porte, recomenda-se a utilização de sistemas de montagem local. Para os outros tipos, recomenda-se o uso de hidroejatores, preferencialmente...
em relação às bombas dosadoras.

2. DOSAGENS EMPREGADAS

Não se dispõe de dados sobre a demanda de cloro da água a ser de sinfetada, recomenda-se iniciar a aplicação com a dosagem de 1 mg/l de cloro.

Iniciada a desinfecção, deverão ser coletadas amostras de água nos extremos da rede de distribuição, a fim de se conhecer o pH da água. De posse deste parâmetro e utilizando-se a Tabela 1, a seguir, determina-se qual a concentração recomendada de cloro residual livre ou combinado a ser obtido na água após o tempo de contato indicado.

Tabela 1

Valores recomendados para residual mínimo de cloro livre e combinado em função do pH, em qualquer ponto da rede.

<table>
<thead>
<tr>
<th>pH</th>
<th>Cloro livre em mg/l após 10 minutos</th>
<th>Cloro combinado em mg/l após 60 minutos</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 a 7</td>
<td>0,2</td>
<td>1,0</td>
</tr>
<tr>
<td>7 a 8</td>
<td>0,2</td>
<td>1,5</td>
</tr>
<tr>
<td>8 a 9</td>
<td>0,4</td>
<td>1,8</td>
</tr>
<tr>
<td>9 a 10</td>
<td>0,8</td>
<td>1,8 a 2,0</td>
</tr>
</tbody>
</table>

Caso o residual obtido seja diferente, deverá ser aumentada ou diminuída a dosagem aplicada. Os exames bacteriológicos subsequentes indicarão os efeitos da desinfecção processada.

O residual máximo permitido por lei está limitado na consideração sobre odor "levemente perceptível" de cloro.

Segundo a Secretaria da Saúde do Estado de São Paulo, dosagens superiores a 2,5 mg/l de cloro livre e por período prolongado podem produzir gastrite.
3. PRODUTOS UTILIZADOS NA CLORAÇÃO

3.1. TIPOS DE PRODUTOS

A escolha da forma em que o cloro é empregado para desinfecção das águas de abastecimento está relacionada com os propósitos pelos quais se deseja sua aplicação, sendo influenciada pelas características e limitações das substâncias em apreço, sua disponibilidade, segurança, facilidade de manuseio, controle de operação e custos relativos.

Dentro desse enfoque serão aqui descritos e analisados os produtos: cloro gás, cloreto de cal ou cal clorada, hipoclorito de sódio e pastilhas de hipoclorito de cálcio.

3.2. CLORO GÁS

3.2.1. Características Gerais

A temperatura e pressão ordinárias, o cloro é um gás amarelo-esverdeado de odor sufocante. É liquefeito por compressão e resfriamento, sendo fornecido aos consumidores sob a forma de cloro líquido, e sofrendo evaporação antes da aplicação.

O cloro seco não ataca metais como ferro, chumbo, cobre e outros, porém, quando úmido ataca quase todos. É um produto não explosivo, sendo apresentado comercialmente em cilindros verticais de 40, 50 e 68 quilos e horizontais de 860, 940 e 1,080 quilos. Tais cilindros são dotados de válvulas de saída e de segurança constituídas de um "plug" fusível à temperatura de 70 a 75°C.

Sob condições normais de temperatura e circulação de ar nos compartimentos dos cilindros, pode-se retirar uma vazão média e contínua de 1 a 3 kg de cloro gásoso por hora, quando fornecido em cilindros de 40, 50 e 68 kg e ao redor de 10 kg por hora quando em cilindros de 860, 940 e 1,080 quilos. Descargas superiores a estes valores poderão ser obtidas por um curto período de
tempo; para um longo período de tempo, isso acarretará uma queda de pressão no interior do cilindro, e em consequência, diminuirá a vazão, podendo, em certos casos, chegar a congelar o cilindro e paralisar totalmente a descarga.

3.2.2. Aplicabilidade do Produto

O cloro gás é recomendado para desinfeção de água em sistemas com vazões acima de 12 l/s, os quais necessitam um consumo de cloro tal que evita uma estocagem prolongada dos cilindros, inconvencente que provocaria vazamentos do gás devido ao endurecimento da gaxeta da válvula de escape do gás.

Sua utilização deve também se restringir aos sistemas que possuam locais apropriados para instalação dos equipamentos e pessoal habilitado para sua operação.

3.2.3. Vantagens da Utilização do Produto

- Baixo custo;
- Requer pequeno espaço físico para armazenamento;
- Versatilidade de dosagens;
- Fácil instalação dos equipamentos.

3.2.4. Desvantagens da utilização do produto

- Provoca corrosão em peças metálicas quando do escape do gás para o ambiente;
- Os cilindros precisam ser armazenados em local seco e ventilado, ao abrigo dos raios solares e da chuva;
- O equipamento de dosagem requer um local isolado;
- É importante a habilitação mais apurada do operador;
- O armazenamento dos cilindros por mais de sessenta dias não é recomendável por causar vazamentos do gás;
- Para vazões reduzidas de água a ser tratada (inferior a 12 l/s) torna difícil o controle do sistema dosador.
3.2.5. Dosadores para Cloro gás

a) Tipo direto

Este tipo é recomendado para locais onde não haja água sob pressão para operar o ejetor e/ou onde não haja eletricidade para operar uma bomba que permita a utilização de ejetores.

Seu funcionamento é dos mais simples. A pressão do gás proveniente do cilindro é reduzida, a quantidade de cloro é medida e ao mesmo tempo é enviado ao ponto de aplicação. A aplicação é feita através de um difusor colocado junto a massa líquida a ser desinfetada.

Este tipo de clorador apresenta algumas deficiências e limitações:

- pressão máxima no ponto de aplicação é de 1,41 kg/cm²;
- acentuadas perdas de cloro devido ao clorador trabalhar sob pressão;
- a mistura do cloro gás com a água é feita por difusão no ponto de aplicação.

b) Tipo a vácuo com solução (fig.1)

O clorador a vácuo é baseado na sucção do gás cloro por intermédio do vácuo produzido no ejetor. Há grande variedade de aparelhos que utilizam este processo dependendo do tipo de controle utilizado.

O método de controle de dosagem recomendado para pequenas comunidades é o manual.

O controle manual requer um operador que ajuste a capacidade em função da vazão de água a ser tratada e da demanda de cloro necessária para manter o residual desejado. Deve ser utilizado apenas para vazões constantes; vazões intermitentes requererão assistência contínua do operador, e dificultarão - sobrenomeira - o controle do cloro residual desejado.

Para desinfecção de água em sistemas com vazões de até 30 l/s, o dosador deverá permitir uma extração
de até 4 kg/dia de gás cloro.

3.3. CAL CLORADA (CaO.Cl₂)

3.3.1. Características Gerais

Também conhecida por cloreto de cal, apresenta-se em pó branco com 30% de cloro ativo, solúvel em água, deixando os resíduos calcários. Possui fraqueza estabilidade, perdendo cerca de 10% de cloro disponível ao mês e é em contrada em sacos plásticos de 1 a 50 kg.

3.3.2. Aplicabilidade do Produto

A aplicação da cal clorada requer um tanque de preparo de solução provido de descarga de fundo.

Normalmente este tanque constitui-se de recipiente tipo "caixa d'água" de cimento ou outro material resistente ao produto (PVC, fibra de vidro, cimento amianto com proteção de resina epoxi) e, sendo que o teor da solução a dosar deverá ser de até 2% de cloro ativo.

Após uma agitação manual da solução e, decantação dos resíduos sólidos, esta solução deverá ser transferida a um recipiente que servirá como reservatório pronto para aplicação.

3.3.3. Vantagens da Utilização do Produto

- facilidade de manuseio;
- não é tóxico, a não ser quando ingerido;
- seu transporte realiza-se facilmente, dispensando medidas de segurança;
- boa solubilidade em água;
- não requer equipamentos sofisticados para dosagem.

3.3.4. Desvantagens da utilização do Produto

- limitação da concentração da solução em 2% de cloro ativo, quando sua aplicação se fizer através de bom
ba dosadora ou hidroejetor;
- requer depósito para o produto ao abrigo do calor e da luz solar;
- deixa resíduos calcários na água a ser desinfetada;
- pode causar entupimentos nos equipamentos;
- pouca estabilidade, perdendo cerca de 10% de cloro disponível ao mês.

3.4. HIPOCLORITO DE SÓDIO (NaOCl)

3.4.1. Características Gerais

É encontrado sob a forma de solução a 10% de cloro ativo, embalado em bombonas plásticas com 40 ou 50 quilos de capacidade. É estável durante algumas semanas, chegando até um mês. É decomposto pela ação do calor e da luz solar e por esta razão deve ser estocado em locais frios e ao abrigo dos raios solares.

3.4.2. Aplicabilidade do Produto

A aplicação de hipoclorito de sódio dispensa a utilização do tanque de preparo, devendo a solução ser transferida diretamente para o reservatório pronto para a aplicação.

3.4.3. Vantagens da Utilização do Produto

- facilidade de manuseio;
- não é tóxico, a não ser quando ingerido;
- fácil transporte;
- não requer equipamentos sofisticados para dosagem.

3.4.4. Desvantagens da Utilização do Produto

- pouca estabilidade, variando sua composição após aproximadamente um mês em estoque;
- requer depósito ao abrigo do calor e da luz solar;
- baixa concentração de cloro ativo;
- é embalado em bombonas plásticas, que se rompem com certa facilidade.

3.5. EQUIPAMENTOS PARA DOSAGEM DE CAL CLORADA E HIPOCLORITO DE SÓDIO

3.5.1. Tipos

Os compostos clorados, quer líquidos ou sólidos, estes dissolvidos em água, podem ser dosados e aplicados utilizando-se os seguintes equipamentos: bombas dosadoras e hidrojetores (estes industrializados) e sistemas de montagem local.

3.5.2. Bombas Dosadoras (figuras 2 e 3)

As bombas dosadoras possuem um bom número de fabricantes, por isso são facilmente encontradas no mercado. A faixa de trabalho das bombas de linha normal de fabricação é ampla, estando compreendida entre o mínimo de 1 l/h e o máximo de 195 l/h de aplicação de solução de desinfetante, o que corresponde a desinfetar vazões de 3 até 540 l/s, com uma solução a 1% de cloro ativo e dosagem de 1 mg/l.

Para bombeamento de solução de cal clorada recomenda-se não ultrapassar concentrações de 2% de cloro ativo e, no caso de solução de hipoclorito de sódio, essa concentração será de no máximo 10%.

O emprego da bomba dosadora apresenta as seguintes vantagens:
- pode dosar a pressão atmosférica ou em contra pressão de no máximo 6 kgf/cm² ou 60 m.c.a;
- possibilidade de regulagem precisa, constante e reproduzível;
- facilidade de operação.

Os inconvenientes de tais bombas são os seguintes:
- a membrana do diafragma tem curta duração;
- as válvulas de retenção tendem ao desgaste em curto prazo;
- necessitam de manutenção periódica (troca de óleo);
- apresentam entupimentos constantes;
- necessitam de disponibilidade e continuidade de energia elétrica;

3.5.3.

Hidroejetores (figuras 4 e 5)

Este equipamento, que é frequentemente utilizado em tratamento de água de piscinas, constitui-se em uma boa alternativa para aplicação de soluções desinfetantes em sistemas de abastecimento de água de pequenas comunidades.

A exemplo das bombas dosadoras, também são encontrados com facilidade no mercado, visto que seus fabricantes são praticamente os mesmos.

A faixa de trabalho do hidroejetor de linha normal de fabricação é compreendida entre o mínimo de 1 l/h e o máximo de 25 l/h de aplicação de solução desinfetante, o que corresponde a desinfetar vazões de 3 até 70 l/s, com uma solução a 1% de cloro ativo e dosagem de 1 mg/l.

As concentrações máximas de cloro ativo nas soluções - de clor Saunders e de hipoclorito de sódio - são as mesmas recomendadas anteriormente para o caso das bombas dosadoras.

O emprego deste equipamento apresenta as seguintes vantagens:
- custo baixo;
- fácil instalação;
- fácil manutenção;
- sua operação não requer mão de obra especializada;
- seu funcionamento não requer energia elétrica.

Os inconvenientes dos hidroejetores são os seguintes:
- a dosagem não é muito precisa;
- exige controle constante devido às variações nas dosagens;
- seu material sofre agressão pela solução desinfetante;
- o equipamento está sujeito a sofrer incrustações quando trabalhar com águas duras;
- sua durabilidade é de aproximadamente um ano;
- seu funcionamento requer água pressurizada.

O hidroejetor pode ser usado para dosar a pressão atmosférica ou em contra pressão de no máximo 1,9 kgf/cm² ou 19 m.c.a.

3.5.4. Sistema de Montagem Local: (figs. 6, 7, 8 e 9)

Estes equipamentos são também uma boa alternativa para utilização em pequenas comunidades. Os dispositivos são esquematizados nas figuras 6, 7, 8 e 9.

Vantagens
- são de fácil construção;
- custo reduzido;
- fácil operação e manutenção;
- permitem dosagens para vazões mínimas;
- utilização em qualquer situação a menos do poço tubular fechado recalçando diretamente para o reservatório elevado.

Desvantagens
- a dosagem não é muito precisa;
- exige controle constante devido a variação da dosagem.

3.6. PASTILHAS DE HIPOCOLORITO DE CÁLCIO

3.6.1. Características Gerais

Este produto, obtido a partir do hipoclorito de cálcio e de um agregante inerte, tem formato cilíndrico com dimensões de 32 mm de diâmetro e 15 mm de espessura.

Cada pastilha pesa, em média, 20 gramas e contém aproximadamente 10 g de cloro ativo.

As pastilhas são facilmente solúveis em água quando
existe agitação e sofrem alterações gradativas na concentração de cloro ativo no caso de permanecerem estocadas por mais de 30 dias. São embaladas em cilindros plásticos com capacidade para 25 drágeas cada.

3.6.2. Vantagens da Utilização do Produto

- são 100% solúveis em água;
- não deixam resíduos calcários na água a ser desinfetada;
- fácil transporte;
- necessitam de área mínima para estocagem;
- sua aplicação se faz com o concurso de energia elétrica produzida por pilhas comuns de 1,5 volts;
- não requerem mão de obra especializada.

3.6.3. Desvantagens da Utilização do Produto

- custo elevado;
- as pastilhas se quebram com facilidade, sendo então inutilizadas para aplicação pelo equipamento dosador;
- após aproximadamente 30 dias em estocagem, ocorrem alterações na concentração de cloro ativo.

3.6.4. Equipamento para Aplicação e Dosagem das Pastilhas - (figura 10)

O dispositivo esquematizado na figura 10 tem a finalidade de liberar periodicamente determinado número de pastilhas. É construído estruturalmente em alumínio anodizado tendo seus eixos e mancais em latão, evitando-se assim o problema da corrosão.

O funcionamento do aparelho é baseado em um mecanismo de relojoaria, movido a pilha, que move um sistema de eixos liberador das pastilhas.

Este equipamento limita-se à aplicação e dosagem apenas por gravidade, tendo capacidade máxima para 36 comprimidos por hora, o que corresponde a desinfecção de até 100 l/s, com a dosagem de 1 mg/l de cloro ativo.
4. CUSTOS

4.1. CUSTOS DOS PRODUTOS

As tabelas 1 e 2, a seguir, indicam os custos diário e mensal dos produtos consumidos para a dosagem de 1 mg/l e funcionamento de 16 h/dia do equipamento de aplicação do desinfetante.

4.2. CUSTOS DOS EQUIPAMENTOS

São a seguir indicados os preços aproximados dos equipamentos dosadores:

- clorador tipo a vácuo com solução, de controle manual ... CR$ 20.000,00
- bomba dosadora .. CR$ 23.000,00
- hidroejetor .. CR$ 2.000,00

Os custos unitários dos cilindros de cloro gás e das bombonas são:
- cilindros: 40 kg ... CR$ 5.800,00
50 kg ... CR$ 6.800,00
68 kg ... CR$ 7.800,00
- bombonas: 40 kg ... CR$ 280,00

A cal clorada e as pastilhas não requerem aquisição à parte de embalagem.
<table>
<thead>
<tr>
<th>PRODUTO</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloro Gás</td>
<td>2,25</td>
<td>4,50</td>
<td>9,00</td>
<td>11,25</td>
<td>14,98</td>
<td>22,47</td>
</tr>
<tr>
<td>Cal Clorada</td>
<td>7,26</td>
<td>14,55</td>
<td>29,00</td>
<td>36,29</td>
<td>48,38</td>
<td>72,58</td>
</tr>
<tr>
<td>Hipoclorito de Sódio</td>
<td>8,48</td>
<td>16,95</td>
<td>33,86</td>
<td>42,34</td>
<td>56,45</td>
<td>84,67</td>
</tr>
<tr>
<td>Pastilhas</td>
<td>69,20</td>
<td>138,40</td>
<td>276,40</td>
<td>345,60</td>
<td>460,80</td>
<td>691,20</td>
</tr>
</tbody>
</table>

OBS.: Preços tomados em novembro de 1978, São Paulo
TABELA 2

Custos (CR$) do Consumo Mensal dos Produtos Desinfetantes
(Dosagem 1 mg/l)

<table>
<thead>
<tr>
<th>PRODUTO</th>
<th>VAZÃO (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CLORO GÁS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67,50</td>
</tr>
<tr>
<td>CAL CLORADA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>217,80</td>
</tr>
<tr>
<td>HIPOCLORITO DE SÓDIO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>254,40</td>
</tr>
<tr>
<td>PASTILHAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.076,00</td>
</tr>
</tbody>
</table>

OBS.: Preços tomados em novembro de 1978, São Paulo
Fig. 1
ESQUEMA DE MONTAGEM PARA APLICAÇÃO DE CLORO GÁS ATRAVÉS DE DOSADOR DO TIPO A VACUO COM SOLUÇÃO.
Fig. 2

ESQUEMA DE MONTAGEM PARA BOMBA DOSADORA
Caso em que a pressão na tubulação de recalque for superior aos valores recomendados
para o equipamento de dosagem.
Fig. 3
ESQUEMA DE MONTAGEM PARA BOMBA DOSADORA CASO EM QUE A PRESSÃO NO PONTO DE APLICAÇÃO ESTIVER DENTRO DOS LIMITES DE UTILIZAÇÃO DO EQUIPAMENTO DE DOSAGEM.
Fig. 4
MONTAGEM ESQUEMÁTICA DO HIDROJETOR
PARA DOSAGEM INFERIOR A 5 L/h DE SOLUÇÃO.
Fig. 5
MONTAGEM ESQUEMÁTICA DO HIDROEJETOR
PARA DOSAGEM SUPERIOR À 5 l/h DE SOLUÇÃO.
RESERVATÓRIO EM CIMENTO OU OUTRO TIPO DE MATERIAL RESISTENTE AO PRODUTO QUÍMICO.

Fig. 6
SISTEMA DE MONTAGEM LOCAL
Fig. 7
SISTEMA DE MONTAGEM LOCAL
Fig. 8
SISTEMA DE MONTAGEM LOCAL
FIG. 9
DETAHES DE UM FLUTUADOR PARA SISTEMA DE MONTAGEM LOCAL
OPÇÃO PARA FIGS. 6, 7 e 8
FIG. 10

EQUIPAMENTO PARA APLICAÇÃO DAS PASTILHAS
FIG. 11
CASA DE CLORAÇÃO

OBS.: NA UTILIZAÇÃO DE CLORO GÁS INSTALAR EXAUSTOR