Roofwater Harvesting

A Handbook for Practitioners

T.H. Thomas and D.B. Martinson
Roofwater Harvesting
Table of contents

Preface

- The growing role of roofwater harvesting 9
- Purpose of this handbook 9
- Background and acknowledgements 12

PART A When should DRWH be considered as a water supply option for a specified location or country? 13

Chapter 1. Introduction to Roofwater Harvesting 15

- What is roofwater harvesting? 15
- General character of roofwater harvesting 17
- Implementing domestic roofwater harvesting 18

Chapter 2. The Advantages and Limitations of DRWH 23

- DRWH compared with other forms of water supply 23
- Quantity: How much water can be harvested? 26
- Different ways a household can use DRWH 27
- Low-cost forms of DRWH 29
- Risk and reliability 30
- When not to use DRWH 32
- Initial check list 32
- The main applications of domestic roofwater harvesting 33
- Water-access distances 35
- Economic viability 35

Chapter 3. Health Aspects of RWH 38

- Water quality 38
- Mosquito breeding 44
- Special risks peculiar to RWH systems 45
- Health benefits 45

Chapter 4. Delivering DRWH Systems 47

- The special problems of subsidised DRWH 47
- The supply chain for DRWH components 48
- Small rainwater supply companies 49
- Delivery of DRWH by NGOs 50
- DRWH in government water programmes 51
- Increasing the demand for and understanding of DRWH 54
Chapter 10. DRWH Systems for Specific Scenarios

10.1 Rural self-supply DRWH using a commercial supply chain

10.2 Subsidised DRWH to improve ‘water coverage’

10.3 Subsidised DRWH for people with disabilities

10.4 DRWH in emergencies

10.5 Institutional RWH

Chapter 11. Sources of Further Information

11.1 Books & Guides

11.2 Web sites

Appendices

Appendix 1: Economic Viability and Contribution to Safe Water Coverage

- Calculation of payback time
- Economic comparison of DRWH with rival technologies
- Safe water coverage

Appendix 2: Tank Designs

- Moulded plastic
- Drum tank
- Open-frame ferrocement tank
- Closed-mould ferrocement tank
- Pumpkin tank
- Plate tank: Brazil
- Plate tank: India
- Interlocking block tank: Thailand
- Brick-lime cistern: Brazil
- Dome tank
- Thai jar
- Tarpaulin tank
- Tube tank
- PVC lined concord cloth bag with bamboo frame
- Mud tank
- Thatch tank

About the authors

- About IRC
- Acronyms
Preface

The growing role of roofwater harvesting

Water professionals are becoming increasingly worried about water scarcity. The UN World Water Development Report of 2003 suggests that population growth, pollution and climate change are likely to produce a drastic decline in the amount of water available per person in many parts of the developing world. Domestic Roofwater Harvesting (DRWH) provides an additional source from which to meet local water needs. In recent years, DRWH systems have become cheaper and more predictable in performance. There is a better understanding of the way to mix DRWH with other water supply options, in which DRWH is usually used to provide full coverage in the wet season and partial coverage during the dry season as well as providing short-term security against the failure of other sources. Interest in DRWH technology is reflected in the water policies of many developing countries, where it is now cited as a possible source of household water.

Rainwater systems deliver water directly to the household, relieving the burden of water-carrying, particularly for women and children. This labour-saving feature is especially crucial in communities where households face acute labour shortages due to the prolonged sickness or death of key household members, increasingly as a result of HIV/AIDS, coupled with a reduction in the availability of labour due to education and migration.

There has been much recent activity concerning domestic roofwater harvesting in countries as far apart as Kenya, China, Brazil and Germany. Many countries now have Rainwater (Harvesting) Associations. The technique is approaching maturity and has found its major applications where:

- rival water technologies are facing difficulties (for example due to deterioration in groundwater sources)
- water collection drudgery is particularly severe (for example hilly areas of Africa).

In some locations, such as India, DRWH has been strongly linked with aquifer replenishment programmes. Elsewhere it is seen as an attractive technique, in part because it fits with the decentralisation of rural water supply and is suitable for household management.

Purpose of this handbook

This handbook has been written to assist NGO and government staff responsible for implementing domestic roofwater harvesting systems or programmes. It is also meant to serve as a source of material for rainwater harvesting associations preparing national design guidelines in local languages. Finally, it could be used by individual householders or masons literate in English to design single roofwater harvesting systems.
Part A (Chapters 1 to 4) is focused on answering the question “When should DRWH be considered as a water supply option for a specified location or country?” This entails addressing other questions, such as, “How might DRWH be combined with other water sources?” and “How can DRWH systems be delivered?” Thus, Part A is aimed at those with responsibility for choosing technology – for example managers of NGO and governmental water programmes.

The rest of the handbook, Part B, is aimed at those implementing DRWH programmes and concentrates on which of the many forms of DRWH should be used in particular circumstances.

The handbook is primarily focused on ‘low-cost’ DRWH in the ‘humid tropics’. It is deliberately specialised in geographical scope and target group, and more prescriptive than the good review of rainwater harvesting practice contained in John Gould and Erik Nissen-Petersen’s 1999 book: *Rainwater Catchment Systems* (See Chapter 11 for references and for sources of further information on domestic RWH).

By ‘humid tropics’ we mean areas close to the Equator where rainfall is at least 800 mm per year and where normally not more than three successive months per year have negligible rainfall. However many of the techniques described are also suitable for the Monsoon tropics where annual rainfall is over 1,000 mm but the dry season is long (up to five consecutive months with negligible rainfall).

The table below shows how typical water yields vary with climate (tropical locations are shown in bold). Note that the rain per month in the wet season does not vary greatly across the tropics.

‘Low cost’ is an inexact term: we essentially mean ‘affordable in a developing country’. Providing domestic water in rural areas via ‘point sources’, such as protected shallow wells, springs, boreholes and gravity schemes, appears to cost at least US$ 50 per household. In many ways, DRWH gives a better water service than do point sources, because it entails no fetching or queuing. It would be attractive to define ‘low-cost’ as meaning ‘costing not more than US$ 60 per household’ (roughly the cost of a corrugated iron roof for a small house.) Unfortunately, this is too difficult a cost target for DRWH to reach except under especially favourable climatic conditions. The handbook has therefore been written using US$ 100 per household as a nominal cost ceiling for a system that will meet the bulk of a demand for 100 litres of clean water per household per day. Elaborate and high-performance DRWH systems costing over US$ 1,000 per household, which can be found in countries like USA, Australia and Germany, lie outside the scope of this handbook.
<table>
<thead>
<tr>
<th>Climate</th>
<th>Examples</th>
<th>Annual rainfall mm</th>
<th>‘Wet’ months / year*</th>
<th>Mean daily yield over 12 months (large store RWH)</th>
<th>Mean daily yield in wet season(s) (low-cost RWH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arid</td>
<td>Khartoum, Karachi</td>
<td>200 mm</td>
<td>2</td>
<td>2.5 litre/person/day</td>
<td>15 litre/person/day</td>
</tr>
<tr>
<td>Semi-arid</td>
<td>Bulawayo, N Peru</td>
<td>400 mm</td>
<td>4</td>
<td>5 litre/person/day</td>
<td>15 litre/person/day</td>
</tr>
<tr>
<td>Summer rains</td>
<td>Guayaquil, S W China</td>
<td>800 mm</td>
<td>4</td>
<td>10 litre/person/day</td>
<td>25 litre/person/day</td>
</tr>
<tr>
<td>Humid coastal & Monsoon</td>
<td>Chennai, Beira</td>
<td>1,000 mm</td>
<td>6</td>
<td>12.5 litre/person/day</td>
<td>25 litre/person/day</td>
</tr>
<tr>
<td>Equatorial (2 wet seasons)</td>
<td>Kampala, Ibadan</td>
<td>1,500 mm</td>
<td>9</td>
<td>18.5 litre/person/day</td>
<td>25 litre/person/day</td>
</tr>
<tr>
<td>High rainfall every month</td>
<td>Singapore, Manaos</td>
<td>2,000 mm</td>
<td>12</td>
<td>25 litre/person/day</td>
<td>25 litre/person/day</td>
</tr>
<tr>
<td>V High rainfall seasonal</td>
<td>Freetown, Yangon</td>
<td>>2,500 mm</td>
<td>7</td>
<td>>30 litre/person/day</td>
<td>>50 litre/person/day</td>
</tr>
</tbody>
</table>

Table assumes 7 sq m of roofing per person; *‘wet’ = rainfall over 40 mm/month

As a short handbook rather than a lengthy research report, this publication offers only brief evidence to support its recommendations and suggestions. Much of that evidence has however been published elsewhere, for example at the biennial conferences of the International Rainwater Catchment Systems Association (IRCSA)

All the hardware recommended has been field-tested.

Background and acknowledgements

In 2000 the UK Government’s Department for International Development (DIFD) granted a contract to the Development Technology Unit at Warwick University, UK to research low-cost domestic roofwater harvesting for application in poor households in tropical countries. The research was undertaken in collaboration with local NGO partners, namely Water Action in Ethiopia, Lanka Rain Water Harvesting Forum in Sri Lanka and ACORD in Uganda. The study centred on developing and field testing low-cost DRWH technologies in one urban/peri-urban and two rural communities in each country, (see www.eng.warwick.ac.uk/dtu/pubs/rwh.htm for reports). The research
programme culminated in March 2003 with national workshops in all three countries, feedback from which has been incorporated in this handbook.

That work built upon other research into tropical roofwater harvesting undertaken from 1998-2001 with support from the European Union and involving a partnership of British, German (FAKT), Indian (IIT Delhi) and Sri Lankan (LRWHF) organisations. The geographical focus of both research programmes was on areas where DRWH is comparatively easy and hence cheap to practice, rather than the semi-arid areas hitherto targeted by most roofwater-harvesting programmes. Lessons learnt during two further studies in Uganda since March 2003, funded respectively by the Ugandan Directorate for Water Development (DWD) and the Southern & Eastern Africa Rainwater Network (SEARNET), have also been incorporated in the handbook.

As a result of these and other recent programmes, the art of DRWH has advanced considerably in recent years. It is the purpose of this handbook to communicate these advances in a form suitable for practitioners to apply directly. Of course, further improvements in DRWH technology, including cost reductions, can be expected in the coming decade.

The authors of this handbook are happy to acknowledge with thanks the financial support of DFID and the European Union. Helpful advice from many friends, students and rainwater harvesting specialists, especially those in Sri Lanka, India, Uganda and Ethiopia, has been incorporated.