Socioeconomic differences in severe back morbidity

L Punnett

doi:10.1136/oem.2006.026435

Updated information and services can be found at:
http://oem.bmj.com/cgi/content/full/63/6/369

These include:

References
This article cites 13 articles, 4 of which can be accessed free at:
http://oem.bmj.com/cgi/content/full/63/6/369#BIBL

Rapid responses
You can respond to this article at:
http://oem.bmj.com/cgi/eletter-submit/63/6/369

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections
- Environmental Issues (717 articles)
- Occupational Health (1292 articles)
- Other Rheumatology (1708 articles)

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to *Occupational and Environmental Medicine* go to:
http://journals.bmj.com/subscriptions/
Socioeconomic differences in severe back morbidity

L Punnett

Commentary on the paper by Kaila-Kangas et al (Occup Environ Med, April 2006)*

Socioeconomic disparities in morbidity and mortality have become a topic of major interest in public health. Voluminous evidence demonstrates the importance of socioeconomic status (SES) for an impressive range of health conditions: obesity, depression, cardiovascular disease, chronic headache, etc. In the April issue of the journal, Kaila-Kangas and colleagues reported on SES differences in first hospitalisation for back disorders.

There is little consensus about the mechanism of the SES–health gradient. Proposed causal pathways—not necessarily mutually exclusive—include material deprivation, adverse “lifestyle” conditions (smoking, poor nutrition, etc.), inadequate access to health information, and relative deprivation leading to social mistrust. Debate has also arisen over the “best” indicator of SES, and especially whether it should be assessed in terms of an individual’s social status or prestige (often in terms of personal access to goods, services, and knowledge) or at the level of a group’s social and economic control of resources.

While key variables such as education, grade of employment, income, and assets are correlated in the general population, they do not always give the same results across outcomes and populations. Further, these characteristics may interact; for example, racial differences in physical and mental health were less pronounced when adjusted for income and education, although perceived racial discrimination was still related to health status. This highlights the importance of understanding the mechanism(s) involved, which may vary by outcome.

A similar SES gradient exists in musculoskeletal disorders as for other health outcomes. Low back pain (LBP) incidence and severity are inversely related to blue collar versus white collar status, income, and education. Similar trends have been noted for neck and upper extremity disorders, knee osteoarthritis, and so on. The effect of SES on LBP has been independent of “lifestyle” factors such as smoking, leisure-time physical activity, body mass index, alcohol consumption, or marital status.

A large part of the socioeconomic gradient in musculoskeletal disorders (MSDs) may be due to differences in the type of work performed, since lower SES jobs consistently involve more physically strenuous and repetitive work. Marmot, for one, has argued for the central role of low control over one’s life circumstances, especially in the workplace. Psychosocial conditions at work and physical load were both worse for blue collar than white collar employees, as well as for women compared with men. In each of these subgroups, such working conditions predicted the development or worsening of MSDs over a 10 year follow up period. Indirect evidence for the effect of SES acting through working conditions may be found in a 25 year follow up of Finnish adolescents, among whom SES in adolescence was not predictive of MSD symptoms in adulthood, although MSDs were inversely associated with both level of education attained and monthly salary.

Kaila-Kangas et al have examined the simultaneous effects of individuals’ education and group level occupational status (manual/non-manual), which is also a rough proxy for physical workload. They report 30–60% more hospitalisations among blue collar than white collar workers, and a higher effect among younger workers, especially men. There was no effect modification by gender, unlike findings reported by others.

There are numerous and potentially competing explanations for these findings: (1) actual socioeconomic differences in the occurrence of back morbidity, mediated through physical job demands; (2) socioeconomic differences in how physicians evaluate patients’ need for hospital care (bias in medical decision making); (3) confounding of manual work by occupational psychosocial factors such as low job control; (4) manual work being a risk factor not for occurrence, but for progression to more severe forms of morbidity after back pain has occurred (that is, prognostic rather than aetiological); (5) socioeconomic differences in how people “cope with their work” (that is, their physical and psychological ability to meet the demands of their jobs after they have developed the job); and (6) confounding of manual work by exposure to non-occupational risk factors for LBP, either aetiological and/or prognostic.

In addition, within job strata, higher education was protective, especially in men. It is an interesting and unexplained observation. A low level of education leads to limited occupational choices and thus to jobs with more psychosocial strain as well as physical load; relatively few blue collar workers have more than 12 years of education. Nonetheless, education seems to contribute to the risk of back morbidity beyond its effect on occupation.

Many investigators have treated SES as a potential confounding variable that requires adjustment in statistical analysis. However, to the extent that the components of SES act through or are surrogates for working conditions, both physical and psychosocial, such analyses may in fact serve to obscure the role of those exposures. Our understanding of how to reduce the unequal burden of LBP morbidity will benefit in the future from further elucidation of these separate and combined effects of these factors.

REFERENCES

Correspondence to: Prof L Punnett, Department of Work Environment, University of Massachusetts Lowell, Lowell, MA 01854, USA; Laura_Punnett@uml.edu

Competing interests: none
Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking contributors:
- Pregnancy and childbirth
- Endocrine disorders
- Palliative care
- Tropical diseases

We are also looking for contributors for existing topics. For full details on what these topics are please visit www.clinicalevidence.com/ceweb/contribute/index.jsp

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:
- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500-3000 words), using evidence from the final studies chosen, within 8-10 weeks of receiving the literature search.
- Working with Clinical Evidence editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every 12 months using any new, sound evidence that becomes available. The Clinical Evidence in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to CECommissioning@bmjgroup.com.

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked to view your articles on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500-3000 words in length and we would ask you to review between 2-5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10-14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com/ceweb/contribute/peerreviewer.jsp