Facilitating Community Water Supply
From transferring filtration technology to multi-stakeholder learning

What does it take to bring safe sustainable water supplies to the hundreds of thousands of communities in the developing world who desperately need them? According to Jan Teun Visscher, author of this publication, an important part of the answer is FLAIR.

Facilitating of Learning, Application, Implementation and Reflection is a comprehensive approach to community-based water supply programmes that has evolved from a generation of technology-transfer, community-participation and learning-project paradigms. Jan Teun Visscher traces the history of these forerunners to FLAIR through three decades of research, demonstration, participatory development, catalytic support and long-term monitoring/evaluation.

The bases for his analysis are two long-running IRC R&D programmes: The Slow-Sand Filtration (SSF) project which ran from 1975 to 1986; and the TRANSCOL project, which focused on Multi-Stage Filtration (MSF) and lasted from 1989 to 1996. Visscher revisited a number of MSF plants in Colombia, Bolivia and Ecuador in 2005 to supplement the many reports, evaluations and published papers that, along with his own close association with the two projects, provided the evidence for his proposal of the FLAIR approach.

Facilitating Community Water Supply documents failures as well as successes. The two projects have spanned a period of significant evolution in community water supply approaches and the experiences with SSF and MSF provide fascinating insights into that evolutionary process. Cross-references to approaches in the agriculture sector add value to historic perspective. The author’s conclusion is that “facilitation” should not stop, as it tends to do now, once communities and service providers have been helped through the processes of technology selection and project implementation. The specialized form of facilitation that has developed through learning projects needs to carry on through operation and maintenance, extension, replication and system development. That has implications for governments, donor agencies, NGOs and, importantly, universities in both developed and developing countries, whose task will be to equip their graduates with the necessary FLAIR.
Facilitating Community Water Supply

From transferring filtration technology to multi-stakeholder learning

Jan Teun Visscher

IRC International Water and Sanitation Centre
Delft, the Netherlands
2006

Abstract

What does it take to bring safe sustainable water supplies to the hundreds of thousands of communities in the developing world who desperately need them? According to Jan Teun Visscher, author of this publication, an important part of the answer is FLAIR. Facilitating of Learning, Action, Implementation and Reflection is a comprehensive approach to community-based water supply programmes that has evolved from a generation of technology-transfer, community-participation and learning-project paradigms. Jan Teun Visscher traces the history of these forerunners to FLAIR through three decades of research, demonstration, participatory development, catalytic support and long-term monitoring/evaluation. The bases for his analysis are two long-running IRC R&D programmes: The Slow-Sand Filtration (SSF) project which ran from 1975 to 1986; and the TRANSCOL project, which focused on Multi-Stage Filtration (MSF) and lasted from 1989 to 1996. Visscher revisited a number of MSF plants in Colombia, Bolivia and Ecuador in 2005 to supplement the many reports, evaluations and published papers that, along with his own close association with the two projects, provided the evidence for his proposal of the FLAIR approach.

Facilitating Community Water Supply documents failures as well as successes. The two projects have spanned a period of significant evolution in community water supply approaches and the experiences with SSF and MSF provide fascinating insights into that evolutionary process. Cross-references to approaches in the agriculture sector add value to historic perspective. The author's conclusion is that “facilitation” should not stop, as it tends to do now, once communities and service providers have been helped through the processes of technology selection and project implementation. The specialized form of facilitation that has developed through learning projects needs to carry on through operation and maintenance, extension, replication and system development. That has implications for governments, donor agencies, NGOs and, importantly, universities in both developed and developing countries, whose task will be to equip their graduates with the necessary FLAIR.

Copyright © IRC International Water and Sanitation Centre (2006)
IRC enjoys copyright under Protocol 2 of the Universal Copyright Convention. Nevertheless, permission is hereby granted for reproduction of this material, in whole or in part, for educational, scientific, or development related purposes except those involving commercial sale, provided that (a) full citation of the source is given and (b) notification is given in writing to IRC, P.O. Box 2869, 2601 CW Delft, The Netherlands, Tel. +31(0)15 2192939, Fax +31 (0) 15 2190955, e-mail: publications@irc.nl

ISBN 90-6687-055-9
Layout and printing: Grafisch Centrum van Gils, Wageningen
This book is also available electronically from the publication pages at www.irc.nl.
Content

Preface

1. Introduction
 1.1 The origin and sequence of the projects
 1.2 The IRC
 1.3 Community water supply an important problem
 1.4 Coping strategies falling short
 1.5 The purpose of this study

2. Approach to the enquiry process
 2.1 Methodological viewpoint
 2.2 Grounded theory
 2.3 Case study approach
 2.4 Quality check
 2.5 The framework of analysis

3. Safe water supply: A complex issue
 3.1 The dimension of the problem
 3.2 Sustainable community water supply
 3.3 The level of service
 3.4 The human factor in community water supply
 3.5 Water treatment
 3.6 Slow sand filtration
 3.7 Multi-stage filtration

4. The initial conceptual framework of the SSF project
 4.1 Technology Transfer; the model of the 1970s
 4.2 Autonomous diffusion will follow success
 4.3 The transfer channel
 4.4 Community involvement
 4.5 A platform for collaboration
 4.6 Information sharing and training

5. The slow sand filtration project (Case Study 1)
 5.1 Description of the SSF project
 5.2 The project partners and the project network
 5.3 Phase 1: Exploration and laboratory research
 5.4 Phase 2: Development and demonstration plants
 5.5 Phase 3. Dissemination seminars and publications
 5.6 Extension of the SSF project: Pre-treatment and training
 5.7 Exploring the research questions
 5.8 Conclusion
6. Intermezzo: Re-thinking the approach
 6.1 Technology transfer refined
 6.2 Diffusion needs context, actors and insights
 6.3 Adopting different transfer channels
 6.4 Community involvement in a different light
 6.5 Platform for collaboration is strengthened
 6.6 From information sharing to joint learning
 6.7 Summary

7. The TRANSCOL project (Case Study 2)
 7.1 Overall description of the TRANSCOL project
 7.2 The project philosophy
 7.3 Actors and the project network
 7.4 The experience with implementing TRANSCOL
 7.5 Project Funding
 7.6 Project results
 7.7 Reviewing MSF performance after ten years
 7.8 Learning in other projects
 7.9 Exploring the research questions
 7.10 Conclusion

8. Emerging lessons and concepts
 8.1 A learning alliance made up of different platforms
 8.2 Soft-system thinking with a stakeholder perspective
 8.3 The attributes of MSF
 8.4 Technology transfer and diffusion of innovation
 8.5 Learning projects and facilitation

9. Conclusion and looking ahead
 9.1 Main conclusions
 9.2 FLAIR, a different ‘mindset’
 9.3 Improving community water supply projects with FLAIR
 9.4 Improving sector performance with FLAIR

References
Summary
Resumen
Samenvatting
About the author
List of abbreviations
List of Figures

Figure 1 Conceptual framework for sustainability 52
Figure 2 The interaction model for a functioning water supply system 60
Figure 3 An example of possible distribution of inputs between different actors 66
Figure 4 Combination of treatment concepts 69
Figure 5 Photo of the MSF plant (SSF + pre-treatment) in Paispamba, Colombia 73
Figure 6 Schematic drawing of an SSF system 74
Figure 7 Components of a multi stage filtration (MSF) plant 80
Figure 8 Schematic drawing of a Dynamic Gravel Filter 81
Figure 9 Schematic drawing of an Upflow Gravel Filter in Series 82
Figure 10 Turbidity levels and FC counts in 3 rivers in 1990 83
Figure 11 Stages in the Innovation – Implementation process 89
Figure 12 A pilot plant for pre-treatment research in El Retiro, Colombia 118
Figure 13 Illustrations from the SSF caretakers’ manual, English and Hindi version. 119
Figure 14 The learning cycle 146
Figure 15 Linked implementation of TRANSCOL and the Pre-treatment project 152
Figure 16 Organizational chart of TRANSCOL with its platforms 159
Figure 17 Distribution of project expenditures 169
Figure 18 The research station of CINARA in Puerto Mallarino, Cali 175
Figure 19 Parallel “learning projects” to improve sector investments 178
Figure 20 Reflection of the different boundaries used in TRANSCOL 198
Figure 21 The chain linked model of Kline and Rosenberg 207
Figure 22 Technology Development Learning Projects (TDLPs) 211
Figure 23 Mainstream Optimizing Learning Projects (MOLPs) 211

List of Tables

Table 1 Global water supply coverage 22
Table 2 Qualification of water technologies for Assessment 2000 24
Table 3 Coping strategies for rural water supply in developing countries 25
Table 4 Time-line reflected in this study 36
Table 5 Distribution of Colombian municipalities by population range 49
Table 6 Requirements of water supply and sanitation service provision 53
Table 7 Typical removal efficiencies for conventional SSF units 76
Table 8 Comparison of the key characteristics of SSF and RSF 77
Table 9 Summary of considerations concerning MSF treatment 80
Table 10 Cost comparison of RSF and MSF treatment in Colombia 82
Table 11 Key findings of the research 103
Table 12 Demonstration villages with completed SSF plants in 1980 110
Table 13 Performance of some of the SSF systems 110
Table 14 Some results of SSF design workshops in India and Colombia 118
Table 15 Analysis of the supporting knowledge system framework 128
Table 16 Short and long-term results in terms of number of MSF systems 171
Table 17 Overall performance of seven of the 17 MSF systems of TRANSCOL 173
Table 18 Performance of different MSF systems in Valle region (1990 – 1998) 174
Table 19 Analysis of the supporting knowledge system framework 188
Table 20 Stakeholder categories in TRANSCOL and their main interests 198
Table 21 Relationship between selected stakeholders and MSF in TRANSCOL 201
Table 22 Comparative analysis of 30 MSF systems in Colombia 204

List of Boxes

Box 1 The biological process in SSF needs a caring touch 75
Box 2 An ‘invention’ of an operator 79
Box 3 A missed learning opportunity in Colombia 116
Box 4 Slow sand filter diffusion in India 124
Box 5 The main stages in the TRANSCOL project 154
Box 6 Important examples of MSF systems that made a difference 160
Box 7 Stimulating multi-disciplinary thinking 161
Box 8 Quotes about TRANSCOL from CINARA and IRWG staff in 2005 162
Box 9 The creative workshop as a learning environment 165
Box 10 Some comments from community members in 2005 166
Box 11 The Pre-treatment Project 168
Box 12 CINARA grew and became an important support for the sector 172
Box 13 Variations on maintenance practice invented by untrained operators 176
Box 14 Communities learn from other communities 183
Box 15 The key elements of FLAIR 223
Box 16 Tools to be used in FLAIR 224