Brief Report

Indirect Lead Exposure Among Children of Radiator Repair Workers

C. Aguilar-Garduño, MSc,1 M. Lacasaña, PhD,1 M.M. Tellez-Rojo, MSc,1 G. Aguilar-Madrid, MD, MSc,2 L.H. Sanín-Aguirre, MD, ScD,3 I. Romieu, MD, ScD,3 and M. Hernandez-Avila, MD, ScD1

Background Secondary exposure to lead has been identified as a public health problem since the late 1940s; we investigate the risk of lead exposure among families of radiator repair workers.

Methods A sample of the wives and children, aged 6 months to 6 years (exposed children) (n = 19), of radiator repair workers and a sample of children whose parents were not occupationally exposed to lead (non-exposed children) (n = 29) were matched for age and residence; their geometric mean blood lead levels are compared. Blood samples were obtained by the finger stick method and environmental dust samples by the wipe method; both were analyzed using a portable anodic stripping voltameter.

Results Dust lead levels were significantly higher in the houses of exposed children (143.8 vs. 3.9 μg/g; P < 0.01). In crude analyses, the highest lead levels were observed among children whose fathers worked in home-based workshops (22.4 μg/dl)(n = 6). Children whose fathers worked in an external workshop (n = 13) also had high levels (14.2 μg/dl) (P < 0.01), while blood lead levels in non-exposed children were significantly lower (5.6 μg/dl)(P < 0.01). The observed differences remained significant after adjustment for age and gender.

Conclusions This study confirms that children of radiator repair workers are at increased risk of lead exposure and public health interventions are needed to protect them. Am. J. Ind. Med. 00:1–6, 2003. © 2003 Wiley-Liss, Inc.

KEY WORDS: children; secondary exposure; parental occupational lead exposure; pediatric lead exposure; Mexico

INTRODUCTION

The health effects of lead exposure have been described, from neurological problems and alterations in growth at relatively low blood lead levels, to enzymatic alterations, anemia, nephropathies, encephalopathies, and even death at extremely high blood lead levels [U.S. ATSDR, 1992a,b; WHO, 1995; Sanín et al., 2001]. In recent years, we have seen significant advances in the control of lead exposure due to the elimination of leaded gas and other sources of exposure. Little attention, however, has been given to lead poisoning that occurs by secondary exposure [McDiarmid and Weaver, 1993].
Secondary exposure to lead and various compounds has been identified as a public health problem since the late 1940s. This exposure occurs among workers’ families, relatives, or neighbors by: (a) contact with clothes, shoes, automobiles, or other articles that are contaminated in the work place and then taken to their homes; (b) personal contact with the worker; or (c) when the workshop is home-based (cottage industry) [McDiarmid and Weaver, 1993].

A meta-analysis of 10 secondary exposure studies from the USA, published between 1987 and 1994 showed that 139 secondarily exposed children had a geometric mean blood lead level of 9.3 µg/dl compared to a U.S. population geometric mean of 3.6 µg/dl ($P < 0.01$) [Roscoe et al., 1999]. Currently, in the USA, cases of secondary pediatric poisoning continue to occur [Materna, 2001].

Automobile radiators are frequently repaired with lead and tin welding recycled from old radiators. In Mexico, a study recently undertaken by our group to characterize lead exposure in Mexican workers suggested that the wives and children of radiator repair workers are at an increased risk of lead exposure [Dykeman et al., 2002]. We have expanded our previous work on the lead exposure of families of workers in this industry.

MATERIALS AND METHODS

From October 1999 to March 2000, recruitment was performed by consulting available directories and by visually identifying workshops in the automotive repair areas of three major cities of Morelos, Mexico. A total of 39 workshops were identified. Radiator repair workers were considered eligible to participate in the study if they had children between 6 months and 6 years of age.

Twenty-three radiator repair workers were eligible and of these 20 agreed to participate, 6 of who had workshops based in the home. The final study population included 48 children and 47 wives distributed as follows: 19 children of radiator repair workers (exposed children) and 29 children and their mothers selected at random from the same residential areas, always living on the same street at a distance between 100 and 150 m from the home of an exposed child, and with parents who were not occupationally exposed to lead (non-exposed children). One exposed participant was excluded because the child was on chelation therapy.

Parents of the participating children were informed of the study’s purpose and were asked to sign an informed consent form. The protocol was reviewed and approved by the Human Subjects Committee of the National Institute of Public Health of Mexico. All participants received information on how to reduce lead exposure.

The blood samples were taken at home from the children of both groups and dust samples were collected from their homes (entrance, laundry room, and living room). Other potential lead sources, such as previously documented socio-economic, behavioural, and cultural predictors of blood lead levels (e.g., use of leaded glazed pottery) were evaluated using a questionnaire. All questionnaire information was provided by the mothers of participating children.

Laboratory Analysis

The blood samples were obtained by a nurse trained in the collection of finger-stick blood samples according to a protocol that minimized external lead contamination of the sample. Children’s fingers were washed with surgical soap. They were instructed to keep their hands in a prayer-like position to avoid contamination. Blood samples, obtained via a prick of the ring finger, were placed in capillary tubes with heparin, and were analyzed using a LeadCare™ portable anodic stripping voltameter [ESA, 1997]. This voltameter is simple to use, requires neither manual calibration nor refrigeration, and provides a blood lead level in a few minutes. The detection limit of this instrument is reported to be 1.4 µg/dl and it has a working range from 0 to 65 µg/dl [Taylor et al., 2001].

Environmental sampling was carried out in accordance with the PaceScan 3000™ operator’s manual [PaceEnvirons, 1997] following the procedures recommended by the Environmental Sciences Technology Laboratory of the Georgia Technical Research Institute, as has been previously described in other studies in Mexico [Romieu et al., 1995]. For each sample, new latex gloves were used to avoid cross-contamination. When sampling for each house was finished, new gloves were used to fold and place a clean towel in a container to serve as a field blank.

The dust lead wipe samples were microwaved, subjected to 15% technical grade nitric acid, and analyzed by anodic stripping voltametry (ASV) with the PaceScan 3000™ voltameter [PaceEnvirons, 1997]. The sampling method has been validated [Ashley et al., 1996] using the method for lead in surface wipe samples of the National Institute for Occupational Safety and Health (NIOSH) (Method 9100) [Eller and Cassinelli, 1994], and the ASV method with atomic absorption analysis [Ashley, 1995].

Statistical Analysis

Depending on the distribution of the variable under study, we did an exploratory and descriptive analysis to compare summary statistics among the study groups. This comparison was performed using a t-test for comparing means or the Kruskal Wallis test, depending on the variable distribution. Prior to this, the homogeneity of variances was verified using an F test.

Next, we did multivariate linear regression to adjust for potential confounders. The blood lead levels were log-e transformed to satisfy the assumption of normality of the residuals. The fit of the model and influential points were...
evaluated with standard techniques using studentized residuals. In addition, we used the robust regression with cluster option specific for grouped data by matched design. All the analyses were conducted using the STATA 6.0 program for statistical analysis [STATA Corporation, 1999].

RESULTS

Dust lead concentration was significantly higher ($P < 0.05$) in the exposed children’s homes (Table I). All the field blanks ($n = 48$) were under the lead detection limit of the PaceScan3000TM [1.4 µg/g].

The mean age (standard deviation (SD)) in exposed children ($n = 19$) was 2.9 (1.4) vs. 3.2 (1.7) years in non-exposed children ($n = 29$), ($P = 0.43$). The mean (SD) education level in the exposed group was 8.2 (2.9) years vs. 9.5 (3.6) years in non-exposed mothers ($P = 0.32$).

The mean (SD) blood lead levels in crude analyses for exposed and non-exposed children were 16.3 (1.8) and 5.6 (2.2) µg/dl, respectively. Girls showed higher blood lead levels than boys in the exposed group (20.1 vs. 11.6 µg/dl) and the non-exposed group (7.4 vs. 4.5 µg/dl) (Table II).

Children between 6 and 18 months of age had higher blood lead levels in the exposed group 24.5 (1.3) µg/dl as compared to 9.6 (1.6) µg/dl in the non-exposed group ($P < 0.01$). In neither group were there significant differences related to chewing toys or pencils, nor for the use of lead glazed pottery (LGP) to cook or store food (Table II). However, we do not have information regarding the consumption by the child of food prepared or stored in LGP.

Blood lead levels in exposed mothers were higher than in non-exposed mothers, but this difference was not found to be significant (Table II). In the exposed children, the mean blood lead level was about two times higher if the mother washed the work clothes at home (18.9 vs. 10.2 µg/dl, $P = 0.04$), the child visited the workshop more than once a month (21.1 vs. 11.6 µg/dl, $P = 0.02$), or a household member in addition to the father worked in the workshop (25.3 vs. 12.7 µg/dl, $P < 0.01$) (Table III).

Mean (SD) blood lead levels of the exposed children who lived in a cottage industry ($n = 6$) reached 22.4 (1.5) µg/dl, compared to 14.2 (1.8) µg/dl for those who did not live in cottage industry ($n = 13$) (Table III).

In the multivariate linear regression, after adjusting for age and gender, in comparison to the control group the exposed group that did not live in a cottage industry had a relative increase in blood lead level of 2.32 µg/dl, 95% CI: (1.62–3.42 µg/dl). Those living in a cottage industry had a relative increase in blood lead level of 4.57 µg/dl, 95% CI: (2.65–7.85 µg/dl) (Table IV).

DISCUSSION

Our results document that children of radiator repair workers in the state of Morelos, Mexico, have an increased risk of lead exposure. The blood lead levels observed in the exposed group were close to three times higher than those observed in the reference group, and almost four times higher for those living in a cottage industry.

We assume that the study groups are comparable because the exposed and non-exposed children come from the same source population. They were paired by place of residence to control for other potential environmental lead pollution sources and there were no statistically significant differences regarding children’s age, maternal age, nor maternal education. In addition, although our study sample was limited, we believe that the workshops studied were similar to those in other parts of the country.

Dust lead levels in the comparison group were found to be under the 10 µg/g reference level [CDC, 1985Q4; U.S. ATSDR, 1992a]. Dust lead levels were significantly higher in the exposed group and similar to the levels found in previous studies on polluted sites [CDC, 1985Q5; McDiarmid and Weaver, 1993; Lanphear et al., 1998; Materna, 2001]. The field blanks and the Lead-Care were not contaminated.

TABLE I. Dust Lead Levels (µg/ft²) in Three Sites in Homes of Children Under 7 Years of Age in the State of Morelos, Mexico (1999–2000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exposed group</th>
<th></th>
<th></th>
<th>Non-exposed group</th>
<th></th>
<th></th>
<th>P<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean<sup>a</sup></td>
<td>SD<sup>b</sup></td>
<td>n</td>
<td>Mean<sup>a</sup></td>
<td>SD<sup>b</sup></td>
<td>P<sup>e</sup></td>
</tr>
<tr>
<td>Laundry room</td>
<td>18<sup>d</sup></td>
<td>140.8</td>
<td>328.7</td>
<td>26<sup>d</sup></td>
<td>10.2</td>
<td>16.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Entrance</td>
<td>19</td>
<td>143.8</td>
<td>287.4</td>
<td>27<sup>d</sup></td>
<td>3.9</td>
<td>11.6</td>
<td>0.02</td>
</tr>
<tr>
<td>Living room</td>
<td>19</td>
<td>43.0</td>
<td>75.9</td>
<td>28<sup>d</sup></td>
<td>1.3</td>
<td>7.0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

^aArithmetic mean.

^bStandard deviation.

^cKruskal Wallis test; for not satisfying the normality assumption.

^dOne, two, or three missing data.

Indirect Lead Exposure^{Q1}
Children between 6 and 18 months showed significantly higher blood lead levels in both the exposed group and the non-exposed group than children in other age groups. This was probably due to increased contact with lead-polluted waste and dust resulting from the tendency for hand to mouth activity in children at this age, as reported in previous studies [Roels et al., 1980; Angle and McIntire, 1982; Mielke and Reagan, 1998].

TABLE II. Mean Blood Lead Levels (μg/dl) and Their Predictors in Children Under 7 Years of Age in the State of Morelos, Mexico (1999–2000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exposed group</th>
<th></th>
<th></th>
<th>Non-exposed group</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean*</td>
<td>SD b</td>
<td>n</td>
<td>Mean*</td>
<td>SD b</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
<td>--------</td>
<td>----------</td>
<td>----</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Children</td>
<td>19</td>
<td>16.3</td>
<td>1.8</td>
<td>29</td>
<td>5.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Girls</td>
<td>12</td>
<td>20.1</td>
<td>1.8</td>
<td>13</td>
<td>7.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Boys</td>
<td>7</td>
<td>11.6</td>
<td>1.5</td>
<td>16</td>
<td>4.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Mothers</td>
<td>19</td>
<td>8.3</td>
<td>1.9</td>
<td>29</td>
<td>6.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5–1.5</td>
<td>4</td>
<td>24.5</td>
<td>1.3</td>
<td>7</td>
<td>9.6</td>
<td>1.6</td>
</tr>
<tr>
<td>>1.5–4</td>
<td>9</td>
<td>12.3</td>
<td>1.9</td>
<td>13</td>
<td>4.4</td>
<td>2.5</td>
</tr>
<tr>
<td>>4–6</td>
<td>6</td>
<td>19.1</td>
<td>1.4</td>
<td>9</td>
<td>5.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Cook with LGP^c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>16.5</td>
<td>1.6</td>
<td>18</td>
<td>6.2</td>
<td>2.5</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>16.1</td>
<td>2.0</td>
<td>11</td>
<td>4.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Place where child plays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yard</td>
<td>2</td>
<td>12.8</td>
<td>1.0</td>
<td>9</td>
<td>5.10</td>
<td>2.8</td>
</tr>
<tr>
<td>Living room</td>
<td>15</td>
<td>16.1</td>
<td>1.8</td>
<td>20</td>
<td>5.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Workshop</td>
<td>2</td>
<td>24.3</td>
<td>1.6</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chewing toys or pencils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
<td>17.0</td>
<td>1.8</td>
<td>8</td>
<td>5.4</td>
<td>3.0</td>
</tr>
<tr>
<td>No</td>
<td>6</td>
<td>15.2</td>
<td>1.6</td>
<td>21</td>
<td>5.7</td>
<td>2.0</td>
</tr>
</tbody>
</table>

NA, not applicable.
^aGeometric mean.
^bStandard deviation.
^cLead glazed pottery.

TABLE III. Mean Blood Lead Levels (μg/dl) and Their Main Determinants in Children Under 7 Years of Age in the State of Morelos, Mexico (1999–2000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>Mean*</th>
<th>SD b</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-exposed children</td>
<td>29</td>
<td>5.6</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Exposed children, but not in a cottage industry</td>
<td>13</td>
<td>14.2</td>
<td>1.8</td>
<td><0.01</td>
</tr>
<tr>
<td>Exposed children living in a cottage industry</td>
<td>6</td>
<td>22.4</td>
<td>1.5</td>
<td><0.01</td>
</tr>
<tr>
<td>Somebody from the household in addition to the father works in the workshop</td>
<td>7</td>
<td>25.3</td>
<td>1.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>12.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>The wife washes the work clothes at home</td>
<td>14</td>
<td>18.9</td>
<td>1.8</td>
<td>0.04</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>10.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Frequency with which the children visit the shop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than once a month</td>
<td>8</td>
<td>11.6</td>
<td>1.6</td>
<td>0.02</td>
</tr>
<tr>
<td>More than once a month</td>
<td>11</td>
<td>21.1</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

^aGeometric mean.
^bStandard deviation.
^cKruskal Wallis test, for not satisfying the normality assumption or t-test.
TABLE IV. Predictors of Geometric Mean of log-e Blood Lead Variation in Children Under 7 Years of Age in the State of Morelos, Mexico (1999–2000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposedb (non-cottage industry)</td>
<td>2.32</td>
<td>(1.62 to 3.42)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cottage industryb</td>
<td>4.57</td>
<td>(2.65 to 7.85)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Boys</td>
<td>−1.45</td>
<td>(−2.05 to −0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>< 1.5 years</td>
<td>2.23</td>
<td>(1.50 to 3.35)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Constant</td>
<td>5.53</td>
<td>(4.01 to 7.61)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

R² = 0.61
aRobust regression.
bReference category: non-exposed.
cConfidence interval.

Although dust lead concentration was significantly higher (P < 0.01) in the homes of the exposed group, we could not document a dose–response association between dust lead levels and blood lead levels as reported by others [Lanphear et al., 1998]. This might be explained by the small sample size of our study.

In the exposed group, blood lead levels were about two times higher when the wife washed the work clothes at home, the child visited the workshop more than once a month or a household member in addition to the father worked in the workshop. Although these variables were important predictors of blood lead levels in the bivariate models, they were not statistically significant in the multivariate analysis. This was probably due to the small size of our study population. This observation may suggest the most risky practices that can be emphasized in intervention programs to prevent lead poisoning in families exposed to lead.

In our non-exposed group, blood lead levels were highly consistent with the results of previous studies for Mexican populations that are not occupationally exposed [Hernandez-Avila et al., 1991; Romieu et al., 1994; Romieu et al., 1996].

Our results suggest that secondary lead exposure in Mexico may be an important public health problem. It is imperative to encourage the health authorities to compile a complete listing of the industries involved in the use of lead with the aim of identifying the population at risk and determining the most urgent priority in terms of prevention and control of pediatric lead poisoning in Mexico.

These activities should consider implementation of standards to limit the lead exposure at the source, such as: adequate workshop facilities for ventilation, installation of showers, provision of clothing and equipment exclusively for work. Moreover, it is necessary to implement educational programs for the population at risk as well as for educators and health providers to rise the awareness on the hazards of lead exposure.

ACKNOWLEDGMENTS

The authors thank Marie O’Neill, M.D., Sc.D., Betania Allen Soc. M.A., and Carl Reddy, M.B. Bch., for their helpful comments and suggestions on the English version of this paper. We also thank Dr. Stephen Rothenberg for his invaluable recommendations on the statistical analysis. Finally, a special thanks to the parents and children who participated in the study.

REFERENCES

Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY
• This will be your only chance to review these proofs.
• Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
• Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
• Check size, numbering, and orientation of figures.
• All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
• Review figure legends to ensure that they are complete.
• Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM
• Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

☐ ADDITIONAL COPIES
• If you wish to purchase additional copies of the journal in which your article appears, please contact Jill Gottlieb at (212) 850-8839, fax (212) 850-6021, or E-mail at jgottlieb@wiley.com

RETURN ☐ PROOFS
☐ REPRINT ORDER FORM
☐ CTA (If you have not already signed one)

RETURN WITHIN 48 HOURS OF RECEIPT VIA EXPRESS MAIL TO:

Larry Graup
Wiley-Liss Production, AJIM
610 Bear Creek St.
Auburn, PA 17922 USA

QUESTIONS?
Larry Graup, Production Editor
Phone: (570) 754-3060
E-mail: lgraup@infi.net
Refer to journal acronym (AJIM) and article production number

You may also fax your corrections to (570) 754-2247. Please fax only the pages which require corrections.
COPYRIGHT TRANSFER AGREEMENT

Date: ____________________________

To: Publisher/Editorial office use only

Re: Manuscript entitled __ (the "Contribution")

for publication in American Journal of Industrial Medicine (the "Journal") published by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. ("Wiley").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue Copyright © [year] Wiley-Liss, Inc. or copyright owner as specified in the Journal.)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor's institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserv or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] © copyright [year] (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]", and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.

2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the
advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor's institution free of charge or to be stored in electronic format in datarooms for access by students at the Contributor's institution as part of their course work (sometimes called “electronic reserve rooms”) and for in-house training programs at the Contributor’s employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER
1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS
In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE
The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS
The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[____]Contributor-owned work

Contributor's signature.. Date

Type or print name and title

Co-contributor's signature... Date

Type or print name and title

ATTACHED ADDITIONAL SIGNATURE PAGE AS NECESSARY

[____]Company/Institution-owned work

Company or Institution (Employer-for-Hire).. Date

Authorized signature of Employer... Date

[____]U.S. Government work

Note to U.S. Government Employees
A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[____]U.K. Government work (Crown Copyright)

Note to U.K. Government Employees
The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
PREPUBLICATION REPRINT ORDER FORM

Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing will be substantially more expensive.

JOURNAL
AMERICAN JOURNAL OF INDUSTRIAL MEDICINE
VOLUME
ISSUE
TITLE OF MANUSCRIPT
MS. NO.
NO. OF PAGES
AUTHOR(S)

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$336</td>
<td>$501</td>
<td>$694</td>
<td>$890</td>
<td>$1052</td>
</tr>
<tr>
<td>5-8</td>
<td>$469</td>
<td>$703</td>
<td>$987</td>
<td>$1251</td>
<td>$1477</td>
</tr>
<tr>
<td>9-12</td>
<td>$594</td>
<td>$923</td>
<td>$1234</td>
<td>$1565</td>
<td>$1850</td>
</tr>
<tr>
<td>13-16</td>
<td>$714</td>
<td>$1156</td>
<td>$1527</td>
<td>$1901</td>
<td>$2273</td>
</tr>
<tr>
<td>17-20</td>
<td>$794</td>
<td>$1340</td>
<td>$1775</td>
<td>$2212</td>
<td>$2648</td>
</tr>
<tr>
<td>21-24</td>
<td>$911</td>
<td>$1529</td>
<td>$2031</td>
<td>$2536</td>
<td>$3037</td>
</tr>
<tr>
<td>25-28</td>
<td>$1004</td>
<td>$1707</td>
<td>$2267</td>
<td>$2828</td>
<td>$3388</td>
</tr>
<tr>
<td>29-32</td>
<td>$1108</td>
<td>$1894</td>
<td>$2515</td>
<td>$3135</td>
<td>$3755</td>
</tr>
<tr>
<td>33-36</td>
<td>$1219</td>
<td>$2092</td>
<td>$2773</td>
<td>$3456</td>
<td>$4143</td>
</tr>
<tr>
<td>37-40</td>
<td>$1329</td>
<td>$2290</td>
<td>$3033</td>
<td>$3776</td>
<td>$4528</td>
</tr>
</tbody>
</table>

REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (212) 850-8789 FOR A PRICE QUOTE.

Please send me _____________________ reprints of the above article at $__________

Please add appropriate State and Local Tax (Tax Exempt No.____________________) $__________

Please add 5% Postage and Handling $__________

TOTAL AMOUNT OF ORDER $__________

International orders must be paid in currency and drawn on a U.S. bank

Please check one:
☐ Check enclosed
☐ American Express
☐ Bill me
☐ Credit Card
☐ Visa
☐ MasterCard

If credit card order, charge to:

Credit Card No
Signature
Exp. Date

BILL TO:
Name
Institution
Address
Purchase Order No.
Phone
Fax
E-mail

SHIP TO:
(Please, no P.O. Box numbers)
Name
Institution
Address
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 3.0x or Adobe Acrobat 4.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or File/Preferences/Notes (in Acrobat 3.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or File/Export/Notes (in Acrobat 3.0). Save your NOTES file to a place on your harddrive where you can easily locate it. **Name your NOTES file with the article number assigned to your article in the original softproofing e-mail message.**

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.