NOTICE

This document was prepared by a University of Arizona undergraduate student under an internship with United States Environmental Protection Agency. This report was not subject to EPA peer review or technical review. The U.S. EPA makes no warranties, expressed or implied, including without limitation, warranties for completeness, accuracy, usefulness of the information, merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorsement, approval, or recommendation by the U.S. EPA.

Spreader fan distributing a mixture of biosolids and fly ash on the Palmerton, PA Site
Mine Reclamation Using Biosolids

CONTENTS

1. Overview of Biosolids ... 1

2. Biosolid Treatment Options ... 1
 2.1 Sewage Sludge Treatment .. 2
 2.1.1 Screening and Grit Removal ... 2
 2.1.2 Primary Treatment .. 2
 2.1.3 Secondary Treatment .. 2
 2.1.4 Tertiary Treatment ... 3
 2.2 Stabilization and Dewatering .. 3
 2.2.1 Alkaline Stabilization ... 3
 2.2.2 Anaerobic and Aerobic Digestion ... 4
 2.2.3 Composting .. 4
 2.2.4 Heat Drying ... 4
 2.2.5 Dewatering ... 4

3. Biosolid Disposal Methods .. 4
 3.1 Landfill and Surface Disposal ... 4
 3.2 Incineration ... 5
 3.3 Land Application ... 6
 3.3.1 Title 40 of the Code of Federal Regulations, Part 503 Rule 7
 3.3.2 Site Selection ... 7

4. Biosolid Design .. 9
 4.1 Correcting pH .. 9
 4.1.1 Lime .. 9
 4.1.2 Fly Ash ... 10
 4.2 Leachates .. 11
 4.2.1 Nitrogen Control .. 12
 4.2.2 Phytoavailability .. 13
 4.2.3 Bioavailability .. 14
 4.3 Acid Mine Drainage .. 14

5. Case Studies .. 14
 5.1 Bunker Hill ... 15
 5.1.1 Goals .. 15
 5.1.2 Site Application and Monitoring ... 15
 5.1.3 Performance ... 18
 5.1.4 Cost ... 18
 5.2 Palmerton ... 18
 5.2.1 Site Application and Monitoring ... 19
Mine Reclamation Using Biosolids

5.2.2 Performance ... 20
5.2.3 Cost .. 21
5.3 Leadville .. 21
 5.3.1 Goals ... 21
 5.3.2 Site Application and Monitoring 21
 5.3.3 Performance ... 22
 5.3.4 Cost .. 22
5.4 Poland – “Project Silesia” .. 22
 5.4.1 Goals ... 23
 5.4.2 Site Application and Monitoring 23
 5.4.3 Performance ... 24
 5.4.4 Cost .. 25

Appendix A – EPA Regional Biosolids Contacts 28
Appendix B – State Biosolids Contacts ... 29
Appendix C – Laws Affecting Biosolids .. 31
References ... 32

TABLES

Table 1. Biosolid Treatments and Uses ... 3
Table 2. Advantages and Disadvantages of Landfills 5
Table 3. Advantages and Disadvantages of Incineration 6
Table 4. Typical Buffer Zones ... 7
Table 5. Slope Limitations for Biosolid Application 8
Table 6. Concentration of Water-Soluble Al and Fe in Biosolids – Amended Soils ... 10
Table 7. Metal Concentrations for Residuals 12
Table 8. Characteristics of Amendments Used in June 1997 16
Table 9. pH and Zinc Levels in 1st Plot Set 17
Table 10. Percent Cover on First Set of Plots in July 1998 and Biomass June1999 ... 18
Table 11. Metal and pH Samples Taken after Amendment Application 22
Table 12. Metal Concentrations of Waste Samples Before and After Biosolids ... 24

FIGURES

Spreader fan distributing a mixture of biosolids and fly ash on the Palmerton, PA Site i
Figure 1 – Mitsubishi Fluidized Bed Incinerator .. 6
Figure 2 – Fly ash use and disposal .. 11
Figure 3 – Bunker Hill Plot Before Treatment .. 25
DEFINITIONS OF SELECTED TERMS AND ACRONYMS

Air slaking: The process of breaking up or sloughing when an indurated soil is exposed to air

Anhydride: A chemical compound formed from another, often an acid, by the removal of water

Caustic lime: Calcium hydrate or slacked lime; also, in a less technical sense, calcium oxide or quicklime

Fly ash: The very fine particle ash that results from the combustion of coal, and is mainly silica oxide and alumina oxide.

Inductively Coupled Plasma Spectrometer: Inductively coupled plasma is a high energy, optically thin excitation source. Power from a radio frequency generator is coupled to a flow of ionized argon gas inside a quartz tube encircled by an induction coil. Liquid samples, in the form of aerosols, are injected into the high temperature environment caused by the plasma. The spectrometer analyzes form free atoms and ions that emit characteristic spectra, which allows for identification.

Line transect method: A marked cable, line, or tape measure is placed across the surface of a field for which an estimate of the percentage of ground cover is desired. Careful observation of the number of marks that occur above various types of ground residue and/or cover may be counted and extrapolated into an estimate of protective cover for the entire field. This is then used to predict the impact on soil erosion.

MSW: Municipal solid waste facility.

Oxidation: The loss of electrons from an atom, compound, or molecule. Generally, the term is applied to the chemical reaction of a substance with oxygen or an oxygen-containing material that adds oxygen atoms to the compound being oxidized.

POTW: Publicly owned treatment works.
The purpose of this report is to describe the current uses of biosolids in the United States, especially the progress being made at mine reclamation sites. The background section will define and describe the production and traditional uses of biosolids. It will respond to common concerns over biosolid use, such as leaching, and explain the safeguards associated with every biosolids project. Finally, case studies will be examined and analyzed to determine the best use of biosolids to date.

Biosolids have proven effective in the reclamation and treatment of former mining sites. They are able to cost efficiently establish a vegetative cover on contaminated lands and limit the movement of metals through erosion, leaching, and wind. A cap is formed upon the application of biosolids because their permeability and water adsorption characteristics prevent water contact with contaminants in the soil below. Depending on the amendments added, biosolids can serve many purposes, including pH control, metal control, and fertilization. Their adaptability allows them to conform to the specific characteristics of any reclamation site.

Although biosolids limit the phytoavailability and bioavailability of toxic metals, they do not remove metal contaminants from the soil. Their application serves to control the mobility of heavy metals and various other contaminants, such as sulfates, through the soil. When combined with phytotechnologies, however, biosolids not only could contain contaminants, but also provide higher degrees of extraction than that offered by typical vegetative covers. Phytotechnologies use plants to contain, stabilize, reduce, detoxify, and degrade contaminants in soil, ground water, surface water, or sediments.

Phytotechnologies can be applied in situ or ex situ and can address organic compounds such as petroleum hydrocarbons, gas condensates, crude oil, chlorinated compounds, pesticides, and explosive compounds plus inorganics including high salinity, heavy metals, metalloids, and radioactive materials (U.S. EPA, 2001a). If biosolids and phytoremediation were used in tandem, they could possibility restore and return a site to near its original condition.

Even though the application of biosolids to remediate mining sites is considered an innovative technology, unlike many others, it can be used effectively and efficiently now. Biosolids technology is already available. It is just a matter of overcoming a few remaining obstacles before the technology can be fully utilized.

Biosolids reclamation use is expected to rise as public support increases and increasing amounts of biosolids are being produced. With increased production comes a greater need for disposal options. With tipping fees at landfills expected to increase and heightened regulations on incineration, land application is quickly becoming the most cost effective disposal method. The amount of biosolids estimated to be in beneficial use by 2010 is nearly 5.7 million dry tons. Many mining sites are still in need of some form of reclamation and biosolids are continually being tailor made for each of these sites.

Today, there is speculation as to how well biosolids perform and under what conditions they can be productive. Test sites such as Bunker Hill, Palmerton, Silesia, Leadville, along with other reclamation projects, will answer many questions regarding biosolids application to mining sites. Results from these sites are promising and biosolids use should only expand in the future.