Respiratory diseases and pesticide exposure: a case-control study in Lebanon

Pascale Salameh, Mirna Waked, Isabelle Baldi, Patrick Brochard and Bernadette Abi Saleh

J. Epidemiol. Community Health 2006;60;256-261
doi:10.1136/jech.2005.039677

Updated information and services can be found at:
http://jech.bmjournals.com/cgi/content/full/60/3/256

These include:

References
This article cites 29 articles, 6 of which can be accessed free at:
http://jech.bmjournals.com/cgi/content/full/60/3/256#BIBL

Rapid responses
You can respond to this article at:
http://jech.bmjournals.com/cgi/eletter-submit/60/3/256

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Environmental Issues (655 articles)
Other respiratory medicine (973 articles)
Asthma (1131 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to Journal of Epidemiology and Community Health go to:
http://www.bmjournals.com/subscriptions/
Respiratory diseases and pesticide exposure: a case-control study in Lebanon

Pascale Salameh, Mirna Waked, Isabelle Baldi, Patrick Brochard, Bernadette Abi Saleh

Study objective: To evaluate the odds of being exposed to pesticides in asthmatic adults.
Design: A case-control study was performed in Lebanon.
Setting: People were approached when consulting physicians as outpatients.
Patients: Asthmatic patients and non-asthmatic controls in several Lebanese hospitals were interviewed.
Main results: The study included 407 subjects from 10 medical centres. Any exposure to pesticides was associated to asthma (OR = 2.11 (1.47 to 3.02); p < 10^-4). Occupational use presented the highest association (OR = 4.98 (1.07 to 23.28); p = 0.02), followed by regional exposure (OR = 3.51 (2.11 to 5.85); p < 10^-6). Results were confirmed by multivariate analysis, particularly for regional exposure (ORa = 2.78; p = 0.02) and house exposure (ORa = 2.17; p = 0.001).
Conclusions: Results are comparable to those found in other studies; especially for occupational exposure. Pesticides toxicological effects may explain chronic respiratory symptoms and asthma associations found with all exposure types. Pesticide exposure was associated with asthma in Lebanese adults.

Asthma is a chronic inflammatory disease associated with reversible airway obstruction. Low concentrations of irritants common to the agricultural environment, such as pesticides, may aggravate underlying asthma; whether pesticides cause asthma themselves has yet to be more investigated and proved.1

Occupational use of pesticides may be involved with respiratory diseases. In an epidemiological study on grapes and apple trees workers, excessive chronic respiratory symptoms have been found: dyspnea and suffocation crisis (74.1% v 5.2%), cough (27.6% v 15.7%), expectoration (25.3% v 13.8%), and chronic bronchitis (20.7% v 13.9%), and also acute symptoms in smokers of more than 10 years employment duration. Low respiratory volumes (0.54 v 0.73 in FVC measured-predicted difference, and 0.12 v 0.35 in FEV1 measured-predicted difference) were noted even after adjustment for smoking, suggesting obstructive and restrictive effects.2 In a study by Gamsky and colleagues, reduced FVC and FEV1 were associated with asthma.3

In pesticides, many indirect and direct exposure opportunities also exist for farmers’ next of kin who live in places where pesticides are used or brought home by lack of decontamination measures.4 5 Subjects living in heavily treated regions are further exposed to pesticide air pulverisation and contamination food and water.6 7 The general population is also exposed to pesticides by domestic use or accidental exposure. Non-occupational chronic respiratory indoor exposure can result in high annual cumulative doses.8

Several accidents have occurred, where people living next to fumigant treated surface (most toxic pesticides used in agriculture)9 10 experienced laryngeal irritation, headache, or even acute pulmonary irritation, cough, and death.11 With paraquat, several symptoms were reported such as cough, rhinitis, dyspnea, wheezing, etc.12 13

Few studies have investigated the health effects of non-occupational pesticide exposure, but living in areas where pesticides are used on crops may represent an environmental health concern, particularly acute intoxication symptoms affecting respiratory, digestive, and neurological systems.12 14 We have conducted a study on Lebanese children, and found out that any exposure to pesticides was associated with asthma and chronic respiratory symptoms (chronic phlegm, chronic wheezing, ever wheezing).15 Thus conducting research regarding pesticides and their relation with asthma in adults is necessary, especially in the Lebanese context.

The objective of this study is to evaluate the odds of occupational, domestic, and environmental exposures to pesticides in adult asthmatic patients in Lebanon.

METHODS
Study design
We conducted a case-control study, comparing pesticide exposure in cases of asthma, in comparison with controls without respiratory problems. The study protocol was approved by an independent review board from the Lebanese Council for Scientific Research, permission number 3750/0.
Population of the study

Cases and controls were recruited in Lebanese hospital centres, chosen from the list of hospitals according to convenience in all Lebanese regions (Beyrouth, Mount Lebanon, North Lebanon, South Lebanon, and Bekaa).

Procedure

One pulmonologist was contacted within every hospital. After they agreed to contribute to the study, they were asked to recruit cases of newly diagnosed asthma, and equal numbers of controls from other divisions. Asthma was defined according to current guidelines for clinical definition of asthma: recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. Any other chronic pulmonary pathology diagnosed by pulmonologists was an exclusion criterion (tuberculosis, fibrosis, cancer, etc.). Chronic bronchitis patients were included in the study, but not in this analysis (article in press). Age categories between 12 and 99 years were included in the study.

Controls were taken in a source population of persons accompanying cases (parents, friends) or seeking advice for another problem in the same hospital: gastroenterology, endocrinology, orthopaedics, cardiology, surgery, neurology, nephrology, and urology. Any chronic respiratory symptom or problem reported by controls before filling in the questionnaire was an exclusion criterion.

Subjects were not aware of the exact objective of the study; information they were given consisted of “a questionnaire regarding their health, the results of which will be useful for science”, and an oral consent to give the information was required, to respect the ethical issue regarding medical information use in research.

Questionnaire and variables

A pretested self administered questionnaire, adapted to local Arabic language from the standardised and validated American Thoracic Society chronic respiratory disease questionnaire, was given to pulmonologists to administer to any American Thoracic Society chronic respiratory disease questionnaire. For pesticide exposure, questions were the following ones: “Have you ever used pesticides out of your work (for house or garden treatment...)?” “Do you live in a region heavily treated by pesticides?” “Do you live in the proximity of a heavily treated field by pesticides?”… An expert in agronomy, who assigned to residency regions a score from 0 to 9 according to yearly consumption of pesticides, provided complementary evaluation of regional exposure. Personal occupational pesticide exposure, occupational use by a family member, regional exposure because of residence in a heavily treated region (score > 4), local exposure by proximity to a heavily treated field, non-occupational exposure by personal house or garden treatment, and indirect exposure by house treatment by someone else, were evaluated. A variable named “ever exposed” is considered positive if the subject declared any exposure type.

Reported symptoms in the self administered questionnaire permitted the study of the declared asthma issue. This primary diagnosis of declared asthma was defined as a recurrent wheezing during the day, evening, night, the whole day or at exercise, a recurrent cough during the day, evening, night, the whole day or at exercise, a history of more than one dyspnea plus wheezing episode treated by a doctor, or a history of asthma previously confirmed by a doctor. The primary diagnosis had then to be reconfirmed by an independent pulmonologist, by re-examining the answers to the questionnaire.

The presence of symptoms was indicated by affirmative responses to the questions, “Have you noticed any wheezing in the chest when you do not have a cold?” “Have you had an episode of dyspnea and wheezing?” “Do you usually have cough when you do not have a cold?”

Active smoking was determined by several questions, categorising subjects in non-smokers (smoking history of less than 20 packs in a lifetime), current smokers, and former smokers. The number of pack years was determined by multiplying the average number of packs of 20 cigarettes smoked per day by the number of years of smoking. Passive smoking was characterised by the number of smokers at home.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (n = 262) (%)</th>
<th>Cases (n = 245) (%)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationality</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebanese</td>
<td>259 (99.2)</td>
<td>237 (96.7)</td>
<td>0.13</td>
</tr>
<tr>
<td>BMI mean (SD)</td>
<td>24.4 (3.8)</td>
<td>25.0 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Sex distribution</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>116 (44.3)</td>
<td>129 (52.9)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>146 (55.7)</td>
<td>192 (47.1)</td>
<td></td>
</tr>
<tr>
<td>Education level</td>
<td><.10^-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>9 years at school</td>
<td>41 (16.0)</td>
<td>76 (31.4)</td>
<td></td>
</tr>
<tr>
<td>9-15 years at school</td>
<td>95 (37.0)</td>
<td>115 (46.5)</td>
<td></td>
</tr>
<tr>
<td>College graduate</td>
<td>121 (47.1)</td>
<td>51 (21.1)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Lebanese</td>
<td>8 (3.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The presence of symptoms was indicated by affirmative responses to the questions, “Have you noticed any wheezing in the chest when you do not have a cold?” “Have you had an episode of dyspnea and wheezing?” “Do you usually have cough when you do not have a cold?”

Active smoking was determined by several questions, categorising subjects in non-smokers (smoking history of less than 20 packs in a lifetime), current smokers, and former smokers. The number of pack years was determined by multiplying the average number of packs of 20 cigarettes smoked per day by the number of years of smoking. Passive smoking was characterised by the number of smokers at home.

Reported symptoms in the self administered questionnaire permitted the study of the declared asthma issue. This primary diagnosis of declared asthma was defined as a recurrent wheezing during the day, evening, night, the whole day or at exercise, a recurrent cough during the day, evening, night, the whole day or at exercise, a history of more than one dyspnea plus wheezing episode treated by a doctor, or a history of asthma previously confirmed by a doctor. The primary diagnosis had then to be reconfirmed by an independent pulmonologist, by re-examining the answers to the questionnaire.

The presence of symptoms was indicated by affirmative responses to the questions, “Have you noticed any wheezing in the chest when you do not have a cold?” “Have you had an episode of dyspnea and wheezing?” “Do you usually have cough when you do not have a cold?”

Active smoking was determined by several questions, categorising subjects in non-smokers (smoking history of less than 20 packs in a lifetime), current smokers, and former smokers. The number of pack years was determined by multiplying the average number of packs of 20 cigarettes smoked per day by the number of years of smoking. Passive smoking was characterised by the number of smokers at home.

Reported symptoms in the self administered questionnaire permitted the study of the declared asthma issue. This primary diagnosis of declared asthma was defined as a recurrent wheezing during the day, evening, night, the whole day or at exercise, a recurrent cough during the day, evening, night, the whole day or at exercise, a history of more than one dyspnea plus wheezing episode treated by a doctor, or a history of asthma previously confirmed by a doctor. The primary diagnosis had then to be reconfirmed by an independent pulmonologist, by re-examining the answers to the questionnaire.

The presence of symptoms was indicated by affirmative responses to the questions, “Have you noticed any wheezing in the chest when you do not have a cold?” “Have you had an episode of dyspnea and wheezing?” “Do you usually have cough when you do not have a cold?”

Active smoking was determined by several questions, categorising subjects in non-smokers (smoking history of less than 20 packs in a lifetime), current smokers, and former smokers. The number of pack years was determined by multiplying the average number of packs of 20 cigarettes smoked per day by the number of years of smoking. Passive smoking was characterised by the number of smokers at home.
Sample size calculation

Sample size calculation was done with an α risk of 5%, a β risk of 20%, and a minimal exposure probability of 20%, representing the percentage of Lebanese residents working in the agricultural sector. The minimal sample size necessary to show a twofold increase in risk consisted of 372 subjects, divided into 186 cases and 186 controls.

Statistical analysis

Data analysis was performed on SPSS software, version 12. Two sided statistical tests were used; χ² test for dichotomous or multinomial qualitative variables, Wilcoxon test for quantitative variables with non-homogeneous variances or non-normal distribution, and Student’s t test for quantitative variables of normal distribution and homogeneous variances.

Regarding multivariate analysis, an ascending stepwise logistic regression was performed, and adjustment over potential confounding variables was done: residency department, number of pack years, number of smokers at home, sex, age, body mass index, nationality, education, working in dusty and toxic fumes environments, cardiac and parental respiratory problem history were included in the analysis.

A Mantel-Haenszel secondary analysis was performed to account for the effect of education level, the surrogate measure for socioeconomic status, on the effect of pesticides exposure over asthma.

RESULTS

In 10 Lebanese hospital centres, 10 pulmonologists participated from several areas of the country (three at Beirut, four in Mount Lebanon, one in Northern Lebanon, one in the Bekaa, and one in Southern Lebanon), with the average ratio of one pneumonologist/4×10⁵ Lebanese inhabitants. Altogether 790 questionnaires (53%) were filled in from 1500 distributed; 33 were then eliminated because of inadequate completion; 757 were accepted (50%).

Altogether 140 (27.8%) subjects reported symptoms not in accordance with medical diagnosis and presented unclassifiable respiratory problems, and 110 (7.3%) presented a chronic bronchitis; these categories were not included in the analysis. A total of 507 questionnaires were finally analysed.

Results are presented for these asthma patients 245 (48.3%) and 262 controls (51.7%).

Social and demographic characteristics

Table 1 summarises social and demographic characteristics. There were significant differences regarding sex, education, and nationality between cases of asthma and controls (p<0.05). Male sex, lower educational level, and non-Lebanese nationality were more common in cases than in controls (table 1).

Smoking, work environment, medical and familial history

There were no differences regarding smoking history of cases and controls. However, more cases declared working in dusty and toxic fumes environments. In addition, a paternal respiratory history was significantly more prevalent in cases than in controls (p<0.05) (table 2).

Exposure to pesticides and asthma

Table 3 reports the types of pesticides exposure. All associations were statistically significant, except for occupational use of pesticides by a family member. Asthmatic patients had higher odds of being exposed to pesticides

<table>
<thead>
<tr>
<th>Table 2 Smoking status, toxic exposure, personal disease, and family history</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Smoking status</td>
</tr>
<tr>
<td>Non-smoker</td>
</tr>
<tr>
<td>Previous smoker</td>
</tr>
<tr>
<td>Actual smoker</td>
</tr>
<tr>
<td>Pack years (SD)</td>
</tr>
<tr>
<td>Smokers at home</td>
</tr>
<tr>
<td>No smoker</td>
</tr>
<tr>
<td>One smoker</td>
</tr>
<tr>
<td>More than one</td>
</tr>
<tr>
<td>Works in a toxic gases environment</td>
</tr>
<tr>
<td>Works in a dusty environment</td>
</tr>
<tr>
<td>Chest trauma</td>
</tr>
<tr>
<td>Cardiac disease</td>
</tr>
<tr>
<td>Paternal respiratory problem</td>
</tr>
<tr>
<td>Maternal respiratory problem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3 Pesticides exposure types and asthma in Lebanon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure type</td>
</tr>
<tr>
<td>Any exposure</td>
</tr>
<tr>
<td>Occupational exposure</td>
</tr>
<tr>
<td>Non-occupational exposure</td>
</tr>
<tr>
<td>House exposure†</td>
</tr>
<tr>
<td>Regional exposure‡</td>
</tr>
<tr>
<td>Local exposure§</td>
</tr>
<tr>
<td>Paraoccupational exposure¶</td>
</tr>
</tbody>
</table>

* Personal use of pesticides; † house treated by pesticides; ‡ lives in a region heavily treated by pesticides; § lives near a field heavily treated by pesticides; ¶ has a family member occupationally exposed to pesticides.
Pesticides seem to cause respiratory diseases, particularly asthma, in non-professional settings.

What this paper adds

- Pesticides are toxic substances known to cause professional diseases, including asthma; little is known about the effect of non-professional exposure.
- Adult asthmatic patients in Lebanon have higher odds of being professionally and non-professionally exposed to pesticides.
- Pesticides seem to cause respiratory diseases, particularly asthma, in non-professional settings.

Quantitative analysis

Analysis of cumulative exposure index correlation to asthma, gave also statistically significant results (table 5). Asthmatic patients had higher cumulative exposure: p<0.05 for any exposure type, except for occupational use that did not reach statistical significance.

DISCUSSION

In this Lebanese case-control study on asthma, asthmatic patients had higher odds of exposures to pesticides. Dose effect relation and multivariate analysis confirmed the results obtained in bivariate analysis, particularly professional, regional, and house exposure. The relative imprecise estimates and borderline significance for the adjusted OR of occupational exposure association to asthma is probably attributable to the small number of people in that category. The same applies for cumulative exposure of occupational exposure and house treatment.

Despite an overall visible effect of pesticides on asthma, the lower education category subjects seemed not to present this association, and their presence in the study diluted the global

Table 4 Pesticides exposure types and asthma in Lebanon: multivariate analysis

<table>
<thead>
<tr>
<th>Exposure type</th>
<th>p Value</th>
<th>Adjusted OR (95% CI)</th>
<th>Significant factors retained in the analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any exposure</td>
<td><10^{-4}</td>
<td>2.32 (1.47 to 3.68)</td>
<td>Age, education, nationality, paternal lung problem, working in dust or toxic fumes</td>
</tr>
<tr>
<td>Occupational exposure</td>
<td>0.056</td>
<td>5.68 (0.96 to 33.33)</td>
<td>Age, education, nationality, paternal lung problem, working in dust or toxic fumes</td>
</tr>
<tr>
<td>Non-occupational exposure*</td>
<td>0.005</td>
<td>2.28 (1.28 to 4.08)</td>
<td>Age, education, nationality, paternal lung problem, working in dust or toxic fumes</td>
</tr>
<tr>
<td>House exposure†</td>
<td><10^{-4}</td>
<td>2.59 (1.59 to 4.26)</td>
<td>Age, education, nationality, paternal lung problem, working in dust or toxic fumes</td>
</tr>
<tr>
<td>Regional exposure‡</td>
<td>0.002</td>
<td>2.91 (1.48 to 5.71)</td>
<td>Age, education, nationality, paternal lung problem, working in dust or toxic fumes</td>
</tr>
<tr>
<td>Local exposure§</td>
<td>0.047</td>
<td>1.83 (1.01 to 3.31)</td>
<td>Age, education, nationality, paternal lung problem, working in dust or toxic fumes</td>
</tr>
</tbody>
</table>

*Personal use of pesticides; †house treated by pesticides; ‡lives in a region heavily treated by pesticides; §lives near a field heavily treated by pesticides.

Table 5 Mean cumulative exposure to pesticides and asthma in Lebanon

<table>
<thead>
<tr>
<th>Cumulative exposure mean (SEM)</th>
<th>Controls (n = 262)</th>
<th>Cases (n = 245)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational exposure</td>
<td>0 applications</td>
<td>1.31 (1.19) applications</td>
<td>0.25</td>
</tr>
<tr>
<td>Non-occupational exposure†</td>
<td>1.10 (0.32) applications</td>
<td>6.00 (2.06) applications</td>
<td>0.02</td>
</tr>
<tr>
<td>House exposure‡</td>
<td>10.61 (1.17) applications</td>
<td>14.15 (1.32) applications</td>
<td>0.045</td>
</tr>
<tr>
<td>Cumulative regional exposure§</td>
<td>87.45 (7.64) years</td>
<td>152.51 (23.95) years</td>
<td>0.01</td>
</tr>
<tr>
<td>Local exposure§</td>
<td>2.19 (0.53) years</td>
<td>5.73 (0.94) years</td>
<td><10^{-4}</td>
</tr>
</tbody>
</table>

†Personal use of pesticides: lifetime number of applications; ‡house treated by pesticides: lifetime number of house applications; §region score: duration of living in that region; ¶duration of living near a field heavily treated by pesticides.
results. The possible reasons for this finding may be that people with low socioeconomic status may live in environmental conditions other than pesticides exposure that may affect their asthma, or may have behaviour such as smoking different from higher education level. In fact, in this study, lower education persons smoked more, and smoking is known to induce hepatic enzymes, and by that to decrease xenobiotics toxicity, pesticides in particular. This is why multivariate analysis was necessary. However, residual confounding attributable to socioeconomic status is still possible, as education level may not completely account for socioeconomic status. This issue remains to be explained with more specific studies. On the other hand, environmental allergens other than pesticides and passive smoking at work were difficult to assess in this study, and may thus also account for residual confounding.

It was not possible to get detailed information on non-responders. However, as subjects did not know the exact objective of the study, answer refusals are expected to be mainly because of non-motivation or illiteracy, but not because of exposure status: all other factors being equivalent, exposed and unexposed people have the same probability of responding. Persons with lower education level have generally lower probability of responding, and they also have higher odds of regional and local exposure to pesticides (results not shown). This may introduce a selection bias of more educated persons, but we do not expect this bias to be differential. Pulmonologists recruiting subjects were also unaware of their exposure status, especially when considering various types of exposure (regional, occupational, domestic). This may decrease selection bias, which however cannot be excluded.

We cannot exclude the fact that cases are likely to present different degrees of diagnosis. On the other hand, controls had mixed non-respiratory diagnosis and are non-comparable to the general population; this could induce an underestimation of the expected associations.

The geographical comparability of cases and controls and the fact that family members were sometimes taken as controls may cause them to have similar non-occupational exposures to pesticides or common familial allergies. This may further bias the results towards the null. Recall and subjectivity bias may also be possible because information on some types of exposure (except regional) was based on self-reporting without further evaluation, but it is most probably a non-differential one between the two groups of comparison, as the subjects were not aware of the study objectives.

Several epidemiological and toxicological studies have shown results comparable to those found in Lebanese children, where asthma was associated with any exposure (OR = 1.73; p < 0.01), regional or local exposure (OR = 2.10; p < 0.05), and domestic exposure (OR = 1.99; p < 0.05). The only notable difference is that regarding para-occupational exposure: children of pesticide professional users have more asthma than other children (OR = 4.61; p < 0.001), while this association type was not found in adults. Possible explanations for this would be the inverse correlation that exists between allergy expression and age, or another concomitant exposure (regional for example) in children not seen in adults. This issue remains to be established by other trials.

Biological plausibility is confirmed by multiple experimental toxicological studies on animals, in addition to known clinical effects of high level exposure. Effects on the respiratory system, linked to the local and systemic toxic actions (especially immune, allergic, and neurological) have sometimes been studied. Most of pesticides being small molecules, they can exacerbate symptoms of atopic patients, asthma, and contact dermatitis by haptenation. Besides type I and IV hypersensitivity, the development of the respiratory problem can be attributable an oxidative stress that may cause detoxification or reparation capacity overwhelming of cells. Pesticides can cause laryngeal and bronchial constriction. Specifically, organophosphates and organochlorates have anticholinesterase activity and are known to cause asthma episodes. Furthermore, some data showed that organophosphate insecticides can cause airway hyperreactivity in the absence of AChE inhibition by decreasing neuronal M2 receptor function. Pyrethroid derivatives are also allergens, causing asthma-like episodes.

In conclusion, pesticide exposure was more common in asthmatic adults, compared with non-asthmatic controls, particularly occupational, regional, and house exposure. The observed effects cannot be related to a specific pesticide as several products are used concomitantly or vary with time, season, crops type, and personal preference. Typical pesticides’ use evaluation and monitoring of different pesticides and other pollutants in the air would be necessary in future research to eliminate the effects of residual biases and confirm our results.

Policy implications

- Cases of asthma can be prevented with adequate preventive measures, such as eviction of exposure to pesticides
- Policies to educate the general population about the risks of pesticides should be implemented in Lebanon
- Pest control with non-pesticides used should also be proposed (integrated pest management, biological means, etc)

In the Iowa farm family health and hazard surveillance project, among farmers, applying pesticides to livestock was associated with significantly increased odds of phlegm (OR = 1.91; 95% CI 1.20 to 3.57), chest ever wheezy (OR = 3.92, 95% CI 1.76 to 8.72), and flu-like symptoms (OR = 2.93, 95% CI 1.69 to 5.12) in models adjusting for age and smoking. Hoppin and colleagues examined chemical use in the past year and self reports of wheeze in the past year among the agricultural health study (AHS) cohort. By using a large, heterogeneous cohort, they were able to control for other asthma related risk factors and to explore the associations of individual pesticides with wheeze. They found an independent role for specific pesticides in respiratory symptoms of farmers.

On the other hand, in Durban, South Africa, an association between asthma among adults and regional use of insecticides was found. In addition, the results of our study are comparable to those found in Lebanese children, where asthma was associated with any exposure (OR = 1.73; p < 0.01), regional or local exposure (OR = 2.10; p < 0.05), and domestic exposure (OR = 1.99; p < 0.05). The only notable difference is that regarding para-occupational exposure: children of pesticide professional users have more asthma than other children (OR = 4.61; p < 0.001), while this association type was not found in adults. Possible explanations for this would be the inverse correlation that exists between allergy expression and age, or another concomitant exposure (regional for example) in children not seen in adults. This issue remains to be established by other trials.

Biological plausibility is confirmed by multiple experimental toxicological studies on animals, in addition to known clinical effects of high level exposure. Effects on the respiratory system, linked to the local and systemic toxic actions (especially immune, allergic, and neurological) have sometimes been studied. Most of pesticides being small molecules, they can exacerbate symptoms of atopic patients, asthma, and contact dermatitis by haptenation. Besides type I and IV hypersensitivity, the development of the respiratory problem can be attributable an oxidative stress that may cause detoxification or reparation capacity overwhelming of cells. Pesticides can cause laryngeal and bronchial constriction. Specifically, organophosphates and organochlorates have anticholinesterase activity and are known to cause asthma episodes. Furthermore, some data showed that organophosphate insecticides can cause airway hyperreactivity in the absence of AChE inhibition by decreasing neuronal M2 receptor function. Pyrethroid derivatives are also allergens, causing asthma-like episodes.

In conclusion, pesticide exposure was more common in asthmatic adults, compared with non-asthmatic controls, particularly occupational, regional, and house exposure. The observed effects cannot be related to a specific pesticide as several products are used concomitantly or vary with time, season, crops type, and personal preference. Typical pesticides’ use evaluation and monitoring of different pesticides and other pollutants in the air would be necessary in future research to eliminate the effects of residual biases and confirm our results.

Authors’ affiliations

P Salameh, B A Saleh, Lebanese University, Lebanon
M Waked, Balamand University, Lebanon
I Baldi, P Brochard, ISPED, Victor Segalen Bordeaux 2 University, France

Funding: Lebanese National Centre of Scientific Research; grant number: 3750/0

Conflicts of interest: none.
REFERENCES

11th European Forum on Quality Improvement in Health Care

26–28 April 2006, Prague, Czech Republic
For further information please go to: www.quality.bmjgp.com
Book early to benefit from a discounted delegate rate

www.jech.com