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Most air pollution and health studies conducted in recent years have examined how a health outcome is related to pollution concentrations from a fixed

outdoor monitor. The pollutant effect estimate in the health model used indicates how ambient pollution concentrations are associated with the health

outcome, but not how actual exposure to ambient pollution is related to health. In this article, we propose a method of estimating personal exposures to

ambient PM2.5 (particulate matter less than 2.5mm in diameter) using sulfate, a component of PM2.5 that is derived primarily from ambient sources. We

demonstrate how to use regression calibration in conjunction with these derived values to estimate the effects of personal ambient PM2.5 exposure on a

continuous health outcome, forced expiratory volume in 1 s (FEV1), using repeated measures data. Through simulation, we show that a confidence

interval (CI) for the calibrated estimator based on large sample theory methods has an appropriate coverage rate. In an application using data from our

health study involving children with moderate to severe asthma, we found that a 10mg/m3 increase in PM2.5 was associated with a 2.2% decrease in FEV1

at a 1-day lag of the pollutant (95% CI: 0.0–4.3% decrease). Regressing FEV1 directly on ambient PM2.5 concentrations from a fixed monitor yielded a

much weaker estimate of 1.0% (95% CI: 0.0–2.0% decrease). Relatively small amounts of personal monitor data were needed to calibrate the estimate

based on fixed outdoor concentrations.
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Introduction

Many longitudinal studies have been conducted over the past

decade to examine the relationship between air pollution and

health indicators such as pulmonary function, respiratory

symptoms, daily hospitalization and mortality counts. In

most of these studies, pollution concentrations in health

effects models have been based on fixed outdoor monitors.

While the slope of the pollutant variable in such a fit model

indicates the association between ambient pollution and the

health outcome, it is not likely to be a good measure of the

effect of the pollutant to which subjects are exposed. This is

primarily due to the fact that people spend the majority of

their time indoors, where they are exposed to a certain

fraction of ambient pollution. As a result, the difference

between the ambient pollutant concentration and the average

personal exposure tends to increase as pollution increases,

which we will refer to as concentration-dependent measure-

ment error. Zeger et al. (2000) discuss more generally issues

of exposure measurement error in time-series studies of air

pollution and health, and point out that pollutant slope

estimators in health effects models are biased when

concentration-dependent measurement error (a type of non-

Berksonian error) exists.

Recently, personal exposure monitors (henceforth called

personal monitors) have been used in some air pollution studies

to get a better idea of how ambient pollution concentrations

relate to personal breathing zone exposures (Janssen et al.,

1997, 1998, 1999; Ebelt et al., 2000; Rojas-Bracho et al., 2000;

Williams et al., 2000; Liu et al., 2003). Some have argued that

moderate to strong correlations between (average) personal
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concentrations and fixed monitor concentrations justify the use

of the fixed monitors in place of personal monitors. However,

such correlations do not indicate whether concentration-

dependent measurement error exists.

Regression calibration and microenvironment models are

two existing methodologies that can be used to obtain

estimates of effect of direct pollution exposure on health,

while still using fixed (surrogate) monitors and relatively little

or no personal monitor data. In the context of pollution–

health studies, regression calibration involves carrying out the

regression between health outcomes and surrogate measures

of pollution exposure, and then adjusting the pollutant slope

estimate based on a known or observed relationship between

the surrogate and actual (or personal) measures of pollution

exposure. Carroll et al. (1995) and Fuller (1987) discuss

regression calibration methods in general; Zeger et al. (2000)

illustrate the methods with a pollution–health study applica-

tion. Microenvironment models (Ozkaynak et al., 1996;

Janssen et al., 1997; Liu et al., 2003) involve breaking down

time that subjects spend within certain environments (e.g.,

outside, at work or school, at home) and then using a

weighted average of concentrations from fixed monitors at

these sites to estimate daily exposures, which can then be used

in health effects regression models.

Since measured personal particulate matter (PM) is a

mixture of pollution from both ambient and nonambient

sources, there is difficulty in determining exactly what portion

of it is based on one source or the other. One possible

solution is to use a component of personal PM that is known

to be derived from ambient sources only, and use this

information to estimate ambient PM exposure concentra-

tions. These derived concentrations can then be used to

estimate effects of ambient PM on a health outcome.

We use this proposed method in conjunction with

regression calibration to estimate effects of ambient PM2.5

on forced expiratory volume in 1 s (FEV1), where personal

ambient PM2.5 exposure concentrations are derived using

sulfate, a component of PM2.5 that is known to be generated

primarily from ambient sources. The models used for the

regression calibration incorporate longitudinal (or repeated

measures) data collected on study subjects. Data from a

health study, collected as part of an EPA study of the effects

of air pollution on children with severe asthma, conducted in

Denver, Colorado from 1999 to the present (see Rabinovitch

et al., 2004), are used to illustrate the methods. Finally,

properties of the proposed estimation technique are examined

through simulation.

Methods

Estimating Personal Ambient PM2.5 Using Sulfate
Total PM2.5 has both ambient and nonambient sources.

Nonambient PM2.5 is usually either generated from indoor or

personal sources, while ambient sources include vehicular and

industrial emissions, wood burning and crustal matter. If

ambient sources can be clearly defined and differentiated

from nonambient sources, then for subject i and time t, total

personal PM2.5 exposure can be expressed as:

XP
it ¼ XN

it þ XA
it

where the superscripts N and A denote nonambient and

ambient sources of PM2.5, respectively. In this article, we are

interested in the effects of ambient sources of pollution on

health. In practice, determining Xit
A is very difficult since the

observable quantity, Xit
P, involves a mixture of ambient and

nonambient PM2.5. In particular, most people spend the

majority of their time indoors, where they are exposed to a

mixture of nonambient PM2.5 and ambient PM2.5 that has

infiltrated indoors. The level of exposure to ambient PM2.5

for a subject who is indoors is often less than for one who is

outdoors (typically about half as much). Nevertheless, total

PM2.5 exposure may often be high for subjects that spend

more time indoors if they are exposed to a significant indoor

aerosol source, such as environmental tobacco smoke (ETS).

One possible approach to estimating personal exposure to

ambient PM2.5 is to consider components of PM2.5 that are

known to originate largely (if not entirely) from outdoor

sources. Sulfate (SO4) is one such compound (Wilson et al.,

2000). Let St and Xt denote the ambient sulfate and PM2.5

concentrations at time t, respectively. Also, let Sit
A denote the

concentration of ambient sulfate that subject i is exposed to

on day t. Then, if the composition of PM2.5 remains

relatively spatially homogeneous at a given time t, we have

the approximate equivalence:

St

Xt

� SA
it

XA
it

ð1Þ

The ‘‘representative location’’ must be one for which

nonambient sources are negligible (e.g., a fixed outdoor

monitor that is not near nonambient sources such as

smokers). If nonambient sources of sulfate are also negligible,

then Sit
A can be approximated by the total personal sulfate

exposure (Sit
P). Thus, with direct measures of St and Xt, and

an approximate value of Sit
A, we can use (1) to obtain an

estimate of personal exposure to ambient PM2.5 (Xit
A).

The difficulty with (1) is that, even if the composition of

ambient PM2.5 is relatively homogeneous outside, the indoor

infiltration efficiency of PM2.5 depends on particle size within

the PM2.5 fraction. Sulfate particles are typically between 0.1

and 1mm in diameter. Although PM2.5 is primarily composed

of particles within this size range, it may also contain coarse

particles between 1 and 2.5mm. Therefore, PM2.5 collectively is

not likely to infiltrate indoors as efficiently as sulfate. To

account for this, a generalization of (1) is:

St

Xt

� l
SA

it

XA
it

ð2Þ
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where l accounts for the average difference in the proportion

of ambient PM2.5 that is made up of sulfate at the ambient

and personal locations. If study subjects have similar living

conditions (e.g., live in same types of housing), then

differences in measured values of l that occur between

subjects and over time could be accounted for in statistical

models with random error. If living conditions of study

subjects vary significantly, then one may desire to estimate

and use subject-specific l values as opposed to one common

value. We found the use of a common l to be adequate. This

issue is further addressed in Discussion.

Wilson et al. (2000) defined FINF as the indoor

concentration of a pollutant divided by the ambient level of

that pollutant, and FPEX as the personal pollutant exposure

concentration divided by the ambient level of that pollutant.

By manipulating (2), we can express l as the ratio of (Xit
A/Xt)

over (Sit
A/St), that is, the ratio of FPEX for PM2.5 to FPEX for

sulfate. Using our data, we obtained an average l estimate of

0.78 (see section ‘‘Estimating the ratio of PM2.5y’’ of

Appendix A).

By considering two extremes, we can evaluate the validity of

our estimate. Subjects who spend all their time outdoors would

be expected to have l near one. Subjects who spend all their

time at one indoor site would be expected to have l that is

approximately equal to the ratio of FINF for PM2.5 to FINF for

sulfate, for that particular indoor location. At the school study

location (see the Application section for details), we observed

these two quantities to be 0.266 and 0.453, respectively,

yielding a ratio of 0.266/0.453¼ 0.59, indicating that the

infiltration rate of ambient PM2.5 was 59% of that of sulfate,

on average. These data suggest that a likely range for l would

be between 0.6 and 1, which contains our observed average

estimate. Our data were collected in fall/winter, and there are

likely to be seasonal differences between infiltration rates.

Based on regression slopes, Sarnat et al. (2002) reported FINF

values of 0.47 for PM2.5 and 0.83 for sulfur in fall/winter, for a

ratio of 0.47/0.83¼ 0.57, similar to ours. (In spring/summer,

the values were 0.72 and 0.77, respectively; ratio¼ 0.935.) It

should be emphasized that FINF ratios and estimates of l may

differ between regions and groups of study subjects, as well as

between seasons; estimates obtained here may not necessarily

apply to other studies.

Given the l estimate (l̂ ¼ 0:78), estimated values of

personal ambient PM2.5 exposure can then be calculated as:

XA�
it ¼ l̂

SA
it

St

Xt ð3Þ

A simple additive error model that accounts for differences

between the actual personal ambient exposure to PM2.5 (Xit
A)

and the estimated amount (Xit
A*) is:

XA�
it ¼ XA

it þ uit ð4Þ

where uit is random error. The assumption for the standard

linear model would be uitBN(0, su
2) independently for all i and t.

The Health Effects (or Main Study) Model
A model relating a health outcome to personal ambient

PM2.5 exposure in a longitudinal panel study is:

Yit ¼ b0 þ b1XA
it þ fa1W 1

it þ a2W 2
it þ � � � þ akW k

itg
þ gi þ eit ð5Þ

where Yit is the health outcome, Xit
A is the true ambient PM2.5

exposure level, eit is random error, i denotes the subject and t

time (e.g., days). The terms b0 and b1 are the fixed y-

intercept and slope parameters, respectively, the latter of

which is used to indicate the effect of the pollutant on the

health outcome. The set of terms within brackets are

covariates with fixed coefficients, aj, j¼ 1,y, k, and gi is a

subject-specific random intercept. An appropriate covariance

of errors structure can be used to account for correlated

responses within subjects over time. A model such as (5) is

often referred to as the ‘‘main study’’ model in regression

calibration and measurement error studies.

The Personal Exposure (or Validation Study) Model
To quantify the relationship between daily personal ambient

PM2.5 concentrations and fixed monitor concentrations, we

consider the model,

XA
it ¼ y0 þ y1Xt þ fiXt þ oit ð6Þ

where fi is a random slope for subject i that indicates a

specific ambient to personal PM2.5 exposure relationship, and

differs by subject primarily due to type of housing (fiBN(0,

sf
2 ), i¼ 1,y, n), and oit is random error. The parameters y0

and y1 are the fixed y-intercept and slope, respectively. In

terms of regression calibration terminology, (6) is often

referred to as the ‘‘validation study’’ model. The model (6)

may also be used in regression calibration when Xt is replaced

with any variable that is linearly related to Xit
A. For details,

see sections on instrumental variables in Fuller (1987) and

Carroll et al. (1995).

Unfortunately, the outcome variable in (6) is unobserva-

ble. However, by incorporating (4), we can express (6) in

terms of the imperfect measure of ambient personal PM2.5

exposure:

XA�
it ¼ y0 þ y1Xt þ fiXt þ oit þ uit ð7Þ

The errors oit and uit in (7) can be combined into one general

error term, oit
0. We first determined Xit

A* values based on (3).

We then used standard mixed model analysis to fit (7). More

details for the fits are given in the Application section.

Regression Calibration
Considering model (5), where the actual personal ambient

exposure Xit
A is replaced with its equation given in (6), yields:

Yit ¼b0 þ b1XA
it þ eit

¼½b0 þ b1y0� þ ½b1y1�Xt þ ½b1gi� þ ½b1oit þ eit�

Since the true slope of Xt in the regression model for Yit is

b1y1, one can expect a corresponding estimate from a mixed

PM2.5 component measurements and regression calibrationStrand et al.
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model analysis to be closer to that quantity than to b1. In other

words, bias is expected in estimating b1 if Xt (ambient PM2.5

concentration at the fixed outdoor site) is used in place of Xit
A

(personal ambient PM2.5). Let b̂1 denote the estimate obtained

from the mixed model analysis when modeling Y as a function

of Xt. If one has a validation study to produce an unbiased

estimate of y1, call it ŷ1, a logical point estimator of b1 would be:

b̂adj
1 ¼ b̂1=ŷ1 ð8Þ

which corrects for the systematic linear difference between

Xit
A and Xt. This procedure is one common form of regression

calibration. Fuller (1987) showed that b̂adj
1 is a consistent

estimator of b1 and gave the form of the asymptotic

distribution of b̂adj
1 in the case where errors (eit) are

independent and no random terms (other than error) are

considered for (5) and (7).

Inference for Calibrated Estimators
The estimator b̂adj

1 is based on the ratio of two slope

estimators, so an appropriate confidence interval needs to

take into account the variability in both these statistics. Most

of the existing theory for confidence intervals of calibrated

estimators is based on large sample (or asymptotic) theory

(e.g., Fuller, 1987; Rosner et al., 1989) or resampling

methods (e.g., Carroll et al., 1995; Haukka, 1995). An

asymptotic distribution of b̂adj
1 ¼ b̂1=ŷ1 can be derived

relatively easily using the delta method (e.g., see Agresti,

2002). Specifically, if it can be shown that b̂1 and ŷ1 are each

asymptotically normal with a certain mean and variance,

then the delta method shows that a function of these statistics

(such as the ratio) is asymptotically normal with a mean and

variance that can be calculated.

Richardson and Welsh (1994) showed that restricted

maximum likelihood (REML) estimators of regression

coefficients in mixed models were asymptotically normal

with certain mean and variance as the number of independent

subjects was increased. These results can be applied to both

b̂1 and ŷ1. If the correlation between these estimators is

negligible, then b̂adj
1  Nðb1; s2b̂adj

1

Þ, where

s2
b̂adj
1

¼ 1

ŷ21
s2
b̂1
þ b̂21

ŷ41
s2
ŷ1

ð9Þ

An estimate of s2
b̂adj
1

(namely, ŝ2
b̂adj
1

), can be determined when

the unknown variances (s2
b̂1

and s2
ŷ1
) are replaced with robust

estimates of variance. Using SAS PROC MIXED, robust

estimates of variance can be obtained with the ‘‘EMPIRI-

CAL’’ option. Using this estimated variance, an approximate

95% CI for b1 is then

b̂adj
1 � 2ŝb̂adj

1

ð10Þ

Rosner et al. (1989) also considered estimators based on

(8)–(10), but where the main study model was a logistic

regression model, the validation study model was a linear

model, and where both involved independent errors.

Application

EPA Study in Denver: Background and Methods
The data for the application of these methods are from an

EPA study in Denver (see Rabinovitch et al., 2004). This

ongoing project involves studying the effects of air pollution

on children (ages between 6 and 12 years) with moderate and

severe asthma. The children attend a school at the National

Jewish Medical & Research Center, where the research is

conducted; this facilitates data collection and monitoring.

Personal and fixed monitor concentrations for the valida-

tion study were recorded within the fall and winter months of

2002–2003 and 2003–2004. The fixed monitors were located

at the school the children attended, one indoors and one

outdoors, and up to 10 children wore personal monitors on a

given day. A daily reading was based on an entire 24 h

period, for all monitor types. Subjects wore the personal

monitor for an entire day, including time at home, to reflect

their actual daily level of exposure. Research Triangle

Institute (RTI) monitors (see Rodes et al., 2001; Lawless,

2003) were used at the fixed sites as well as for subject

personal monitors for the validation study. (The RTI

personal sampling system for children is a compact version

of the adult personal system described by Rodes et al., 2001.)

Total PM2.5 was further broken into measured amounts of

specific components such as elemental carbon, sulfate, nitrate

and ETS. Lawless et al. (2004) describe methods of deriving

ETS concentrations from PM2.5.

After removing flagged data (due to subject noncompli-

ance and/or monitor error), there were 567 daily personal

sulfate concentration values available for analysis among 50

subjects, on days when fixed monitor concentrations were

also available. There were 111 daily readings available for

analysis for both the fixed indoor and outdoor monitors,

after removing flagged values due to monitor error.

The health data and ambient pollution measures used to fit

the main study model were taken in the winter seasons of

1999–2000 and 2000–2001 (same time of year as validation

study). There were 75 subjects in the 2 years of the study

(some in only the first or second study year, and some in

both), and subjects had an average of 57 days with recorded

FEV1 on days when fixed monitor pollution concentrations

were also available. Subjects had several FEV1 values

recorded in the morning (0700–0900) and evening (1700–

2300). Daily FEV1 levels were then obtained for subjects by

averaging the morning and evening means. For more

description of the data collection and methods, see Rabino-

vitch et al. (2004).

Sulfate and PM2.5 Concentrations
Generally, sulfate concentrations are lower in Denver than in

some other regions of the US, and sulfate composes a

relatively small fraction of total ambient PM2.5 (8% on

average, based on data collected within the validation study

PM2.5 component measurements and regression calibration Strand et al.
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period). Still, daily concentrations of ambient PM2.5 and

sulfate were moderately well correlated (r¼ 0.63). Other

PM2.5 components had similar correlations with PM2.5:

r¼ 0.72 between elemental carbon (EC) and PM2.5; r¼ 0.66

between nitrate and PM2.5. However, we chose sulfate to

predict personal ambient PM2.5 exposures because there are

few if any nonambient sources of sulfate, while for EC and

nitrate, this is not as clear.

Table 1 displays summary statistics for daily pollutant

concentrations. Although sulfate concentrations relative to

PM2.5 indoors and outdoors were within 1% (last two rows),

it should be noted that significant amounts of PM2.5 are

generated indoors, but not sulfate. Therefore, the similar

percentages does not reflect equal infiltration rates of sulfate

and PM2.5. Figure 1 shows time-series graphs for daily mean

personal sulfate and fixed outdoor sulfate (panel a), and daily

mean personal sulfate and fixed indoor sulfate (panel b), both

for fall and winter, 2002–2003. The correlation of daily

values for the two series in (a) was r¼ 0.96, and for the two

series in (b) it was r¼ 0.97. However, the data clearly show

that fixed outdoor sulfate levels were generally about twice as

large as mean personal levels, whereas fixed indoor levels

were similar to mean personal levels. Figure 2 shows the

differences in mean personal sulfate and fixed outdoor sulfate

more clearly. The solid line is the least-squares regression fit

to the data (y-intercept¼ 0.079, slope¼ 0.453), while the

dotted line indicates equal concentrations (y-intercept¼ 0,

slope¼ 1). Note that the absolute difference between average

personal sulfate and outdoor sulfate increases as concentra-

tion increases.

The SD of daily mean personal sulfate values (0.51 mg/m3)

was greater than the mean of the daily SD (0.17 mg/m3). This

indicates that sulfate was relatively homogeneous at fixed

times (across subject locations), compared with how it

changed over time.

Validation Study Model Fit
Using the methods described in the Methods section,

personal ambient PM2.5 values (Xit
A*) were calculated for

each subject on days when data were available; a total of 567

observations were generated for 50 subjects. Averages were

computed for each subject within the study period. The grand

Table 1. Summary statistics for daily pollutant concentrations in
validation study period, fall and winter, 2002–2003 and 2003–2004.

Variable n (days) Mean SD Minimum Maximum

Mean personal sulfatea 113 0.594 0.506 0.000 3.035

Outdoor sulfate 111 1.037 1.080 0.000 6.303

Indoor sulfate 111 0.575 0.557 0.000 2.759

Outdoor PM2.5 111 12.699 6.426 0.660 32.290

Indoor PM2.5 111 8.148 4.348 2.750 32.130

Sulfate/PM2.5: outdoor 111 0.079 0.067 0.000 0.529

Sulfate/PM2.5: indoor 111 0.074 0.060 0.000 0.257

Units for sulfate and PM2.5 are mg/m3.
aValues were based on the mean of 1 to 9 subjects per day.
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Figure 1. Daily average personal sulfate exposure versus (a) fixed outdoor sulfate and (b) fixed indoor sulfate. Fixed monitors were placed at
the school the study subjects attended. Day 1 is November 4, 2002; day 128 is March 11, 2003. Similar patterns were observed for fall and winter,
2003–2004 data (not plotted).
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mean of these averages across subjects was 6.38 mg/m3

(SD¼ 1.60, min¼ 3.20, max¼ 10.97). Next, daily FPEX

values were calculated for each subject as (Xit
A*/Xt). The

grand mean of subject averages for this variable was 0.51

(SD¼ 0.14, min¼ 0.19, max¼ 0.92).

Using the constructed Xit
A* values and ambient PM2.5

concentrations, the personal exposure model (7) was fit using

a mixed model analysis (using the default restricted

maximum likelihood (REML) estimators). Since the out-

come represented the fraction of ambient PM2.5 that a subject

was exposed to on a given day, we further constrained the

model by setting y0¼ 0. Estimates obtained for the remaining

parameters were ŷ1 ¼ 0:46 (SE¼ 0.02), ŝ2f ¼ 0:014, ŝ2o ¼ 10
(with an independent error structure for time and subject). A

plot of residuals versus PM2.5 indicated some right skewness,

which is not surprising since the distribution of Xit
A* values

were also somewhat right skewed. It is not expected that this

apparent slight violation of the normally distributed errors

assumption greatly affected estimates and standard errors.

The observed slope value of 0.46 for ambient PM2.5 in the

validation study model regression reflected concentration-

dependent measurement error between outdoor and average

personal pollution concentrations.

Unadjusted and Adjusted Health Effects from the EPA
Study
Using data collected from our health study (also see

Rabinovitch et al., 2004), we determined b̂1 and b̂adj
1 after

fitting the main (5) and validation study (7) models. For the

main study model, daily FEV1 was the outcome, with

outdoor PM2.5 as the predictor of interest. There were several

covariates in this model: height, temperature, barometric

pressure, humidity and linear trend for time as continuous

variables; weekend, holiday and upper respiratory illness as

daily indicator variables; year as a class variable (1 or 2). A

1-day lag of the pollutant to the health outcome was used. A

spatial exponential covariance structure was used to model

correlated responses within subjects over time; this structure

allowed us to account for gaps between days with available

data, including data between years. A total of 4282 subject-

day observations were used to fit the main study model,

which produced b̂1 ¼ �0:002 litres permg=m3 (empirical

SE¼ 0.001), which corresponded to a 1% decrease in

FEV1 per 10 mg/m3 increase in total ambient PM2.5.

Using the estimated slope for the validation study model

(based on generated personal ambient PM2.5 values using

constant l), the adjusted estimate based on (8) was found to be:

b̂adj
1 ¼ b̂1=ŷ1 ¼ �0:002=0:46 ¼ �0:00435 liters per mg=m3

This corresponds to an average decrease in FEV1 of 2.2% per

10mg/m3 increase in ambient PM2.5 for the study subjects.

Using (9) and (10), we calculated the asymptotic 95% CI

for the corrected estimate to be (�4.3%, 0.0%). The CI for

the unadjusted estimate (�2.0%, 0.0%) did not contain the

adjusted point estimate of �2.2%. Since data were combined

across years, one of our key assumptions was that the general

relationship between the ambient pollutants remained con-

sistent. Based on our observations this seemed reasonable.

Equation (9) leads to the inequality sb̂adj
1

� sb̂1=ŷ1. If

contribution from the second term on the right-hand side of

(9) is negligible, then sb̂adj

1
� sb̂1=ŷ1. Consequently, the

significance of the calibrated estimate will be roughly the

same as for the uncalibrated estimate. So when concentra-

tion-dependent measurement error exists, regression calibra-

tion will have a strong effect on the magnitude of the

estimate, but not the P-value. In our case, the second term on

the right-hand side of (9) was indeed negligible, and the P-

values of uncalibrated and calibrated estimates (using z-

statistics) were 0.0455 and 0.0462, respectively. In terms of

statistical power and future studies, Equation (9) and our

data also indicate that increasing the sample size in the main

study model will reduce the variance of b̂adj
1 more efficiently

than increasing the sample size in the validation study model.

Simulated Properties of Estimation Techniques
In order to verify the effectiveness of the regression

calibration methods, 1000 simulations were conducted

assuming our estimates of b1 and y1 to be true. Within each

simulation, the fit personal exposure and health models were

employed to generate new outcomes. (The generated out-

comes included error, so they were not predicted values.) The

health and personal exposure models were then refit, yielding

simulated values of b̂1, ŷ1 and b̂adj
1 . Within each simulation,

data were generated to yield roughly the same sample sizes
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Figure 2. Daily average personal sulfate plotted versus outdoor
sulfate, for fall and winter, 2002–2003 and 2003–2004 (each circle
represents concentrations for 1 day). The solid line is the least-squares
regression fit (y-intercept¼ 0.079, slope¼ 0.453) and the dotted line is
the line of equal concentrations (y-intercept¼ 0, slope¼ 1).
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that were obtained in the actual study. The simulations were

carried out using a created SAS macro-program and

employing the ‘‘Output Delivery System’’ (ODS) to obtain

output for each simulation. More details about these

simulations are given in section ‘‘Details for Simulation’’

for Appendix A.

The average estimate, percentage error (i.e., bias), mean-

squared error (MSE) and confidence interval coverage rates

were all determined for the unadjusted and adjusted estimates

and are displayed in Table 2. The percentage error in the

mean estimate is calculated relative to the true slope. The

MSE is calculated by squaring the difference between each

simulated estimate and true slope, and then averaging these

values. The CI coverage rate is the proportion of constructed

CIs that contain the true slope. This calculation was

particularly important since the CI procedure is not based

on exact methods, but rather on large sample theory.

Results for the adjusted estimates were as expected and

desired; the difference in actual CI coverage and nominal

coverage (95%), as well as bias for the adjusted estimates,

was small and could possibly be due to sampling error in the

1000 simulations. The MSE was roughly twice as large for

the unadjusted estimates than the adjusted ones. The MSE

can also be calculated as the variance plus the squared bias

for the simulated estimates, which are also reported in

Table 2. These quantities show that the MSE was primarily

due to variance for the adjusted estimates, and primarily due

to squared bias for the unadjusted ones. However, the MSE

indicates that the added variability in the adjusted estimates

does not outweigh the gain in unbiasedness that this

estimation technique has.

Discussion

Consideration of Nonambient PM2.5

In our regressions, we estimated the effects of personal

ambient PM2.5 on FEV1. Since personal ambient PM2.5 is

only a portion of the total PM2.5 to which subjects are

exposed, a question arises as to how estimates would change

if nonambient PM2.5 was also included in the model. Using

simple calculations, our data indicated that ambient and

nonambient personal PM2.5 exposures were not correlated.

(Nonambient personal PM2.5 exposures were estimated as

Xit
N*¼Xit

P�Xit
A*.) These findings are consistent with those

reported from Wilson and Suh (1997), and this suggests that

bias is not introduced in estimating effects of XA on health

when XN is not included in the model (Zeger et al., 2000).

Fixed versus Subject-Specific l
The use of a common l to generate personal ambient PM2.5

is preferred for several reasons. First, subject-specific

estimates vary so much that more error is introduced into

the model, making estimation more difficult. This could be as

much due to high variability in the pollutant concentrations

(in time and/or space) as it is in different subject lifestyles and

housing characteristics. Second, by using a common l, we

can estimate personal ambient PM2.5 exposures for subjects

for whom estimation of personal l values are more difficult

(e.g., high-ETS-exposed subjects). Lastly, if a random slope

for the ambient pollutant is included in the validation study

model, we would expect that differences in l values between

subjects would be accounted for by this term, with little or no

effect on the estimate of y1. Examination of our data verified

this. Thus, although estimates of personal ambient PM2.5

exposure will be different for these two methods, it is not

expected that using the common infiltration factor will lead to

bias in estimating y1.

General Conclusions
The slope (y1) in the validation study regression model (6)

indicates whether concentration-dependent measurement

error exists, and it is this quantity that is used in regression

calibration to adjust estimates. Specifically, values of y1 that

differ substantially from one indicate bias in associated

health-effects estimators. Recent articles (Janssen et al., 1997,

1998, 1999; Ebelt et al., 2000; Rojas-Bracho et al., 2000;

Williams et al., 2000; Liu et al., 2003) reported slope

estimates for regressions of personal PM concentrations on

fixed monitor PM concentrations: mean or median slopes

were as low as 0.4 and as high as 0.8 for fixed outdoor

monitors. These findings underscore the importance of

calibrating estimates if fixed monitors are used to measure

exposure levels in health effect studies, when the relationship

between level-of-exposed ambient PM and health is of

interest. Once a reliable value of l is obtained, our proposed

methods will allow researchers to analyze this relationship

without using total personal PM, which has been shown to

pose modeling problems for certain subjects such as those

with high-ETS exposure.

Fortunately, it is possible for past studies to calibrate

estimates if adequate validation study data that are still

Table 2. Properties of unadjusted and adjusted estimators, determined
through Monte Carlo simulation.

Quantity Unadjusted estimator,

b̂1

Adjusted estimator,

b̂adj
1

95% CI coverage rate 154/1000 (15.4%) 939/1000 (93.9%)

True slope �0.00435 �0.00435

Mean estimate �0.00206 �0.00449

% error in mean estimate +53% �3%

MSE� 106 5.81 2.75

Variance � 106 0.56 2.73

Bias2� 106 5.25 0.02

All quantities are based on 1000 simulations. True slope and mean estimate

entries represent the change in raw FEV1 (l) per 1mg/m3 increase of

ambient PM2.5. The units for MSE, variance and squared bias are the

same, but squared.
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relevant can be obtained, and our results suggest that

relatively small amounts of validation study data are needed

in order to adjust pollutant slope estimates from the main

study model, making cost less of an issue. The regression

calibration methods described here can be applied whether

ambient PM components are of interest, or total PM. In the

latter case, extrapolating estimates of exposure is not needed;

one simply uses the observed PM as the outcome in the

personal exposure (or validation study) model.
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Appendix A

Estimating the Ratio of PM2.5 to Sulfate Exposure Factors
(l)

A general approach to estimating l (i) Perform a mixed

model regression of total personal PM2.5 on ambient PM2.5,

where fixed and subject-specific random terms for both the y-

intercept and slope of ambient PM2.5 are included in the

model. If nonambient and ambient PM2.5 exposures are

approximately independent of each other, which our data

suggested (also see Wilson and Suh, 1997), then the personal

slope (fixed slope plus subject-specific random slope)

indicates the average fraction of ambient PM2.5 that the

subject is exposed to within the study period, while the y-

intercept indicates average exposure to nonambient sources.

(ii) Repeat the previous step, with personal sulfate and

ambient sulfate. (iii) The estimate of l for a given subject is

then obtained by dividing the personal PM2.5 slope by the

personal sulfate slope. (iv) The common l can be obtained by

averaging subject-specific estimates.

Notes on Calculations Data for the 21 ‘‘low-ETS’’

children were used to estimate subject-specific l values. (A

‘‘low-ETS’’ subject was defined as one who (i) claimed to not

live in a home with a smoker, and (ii) infrequently had days

with high measured personal ETS exposure within the study

period.) The average estimated value across subjects

(ðl̂ ¼ ð1=nÞ
P

i l̂i) was 0.78 (median¼ 0.75, SD¼ 0.285,

min¼ 0.44, max¼ 1.59). The regression of total personal

PM2.5 on ambient PM2.5 for the remaining 29 subjects

produced counterintuitive results; the slope estimate for the

group was near zero, with no strong outliers apparent in the

data. But slope estimates were similar between ETS groups

for the sulfate regressions (and confirmed when analyzing
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another strong ambient-sourced PM2.5 component,

elemental carbon). This reaffirmed our belief that exposures

to ambient PM2.5 were probably more similar between ETS

groups and that more complex statistical methods were

necessary to model accurately those not in the low-ETS

group.

Details for Simulations
Based on observed fits, we assumed oit

0BN(0,10) (i.e., oit
0

has a normal distribution with mean¼ 0, variance¼ 10),

uitBN(0,2), oitBN(0,8), eitBN(0,0.14) and fiBN(0, 0.014)

for all i and t, and that the correlation between FEV1

responses within an individual on two consecutive days was

0.44. For the models below, values for the random terms

were sampled independently from these distributions for all i

and t, except for eit, which were autocorrelated within

subjects (AR(1) model) with r¼ 0.44. The variance of u was

estimated by examining differences in estimated exposures

between subjects within days since we did not have true

ambient exposures for subjects. The variance for oit was then

determined using so
2 ¼so0

2 �su
2. Within each simulation, the

following steps were taken.

The Health Model (i) Ambient exposures were simulated

as Xit
A¼ 0.46ZtþfiZtþoit. (ii) FEV1 outcomes were then

simulated as Yit¼ 2–0.00435Xit
Aþ eit. (iii) Some FEV1

outcomes were randomly set to missing values so that the

pattern and amount of responses were similar to actual data.

(Subjects missed having FEV1 values on certain days due to

absence or because the recorded FEV1 values were flagged as

invalid.) (iv) The generated FEV1 data were then fit as a

simple linear function of actual ambient PM2.5

concentrations (with correlated errors) to obtain a

simulated estimate of b1.

The Personal Exposure Model (i) Ambient exposures

were simulated (independently of those for the health model)

using Xit
A¼ 0.46ZtþfiZtþoit for the same subjects and

days that personal monitor information was available in the

actual study. (ii) Exposures with measurement error were

then created as Xit
A*¼Xit

Aþ uit. (iii) The generated ambient

PM2.5 exposures and actual ambient PM2.5 concentra-

tions were then used to fit model (7), yielding a simulated

estimate of y1.
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