Genetic Polymorphisms of CYP2A6 and CYP2E1 with Tobacco Smoking is not Associated with Risk of Urothelial Cancer

Hiromasa TSUKINO1,2, Yoshiki KURODA2, Hiroyuki NAKAO2, Hirohisa IMAI2, Yukio OSADA1, Hisato INATOMI1, Kyoko KITAGAWA5, Toshihiro KAWAMOTO4 and Takahiko KATOH2.

1Department of Urology, Miyazaki Medical College, Miyazaki
2Department of Public Health, Miyazaki Medical College, Miyazaki
3Department of Urology, University of Occupational and Environmental Health, Fukuoka
4Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka
5Department of Biochemistry 1, Hamamatsu University School of Medicine, Shizuoka

Abstract

Objectives: To elucidate the association between genetic polymorphisms of CYP2A6 and CYP2E1 and urothelial cancer susceptibility.

Methods: A total of 137 Japanese patients with urothelial cancer and 217 Japanese healthy controls, frequency-matched for age and gender, were selected. The polymorphisms of CYP2A6 and CYP2E1 were analyzed by PCR-RFLP, and cigarette smoking histories were obtained through interviews.

Results: The frequency of CYP2A6 homozygote deletion genotype was 2.9% in the patients, compared with 3.2% in the controls (OR=0.84, 95% CI 0.24–2.96). The frequencies of CYP2E1 C1/c2 and C2/c2 were 27.7% and 4.4% in the patients, compared with 35.5% and 6.0% in the controls (OR=0.68, 95% CI 0.42–1.09, OR=0.67, 95% CI 0.24–1.84, respectively). No statistically significant differences were observed when the CYP2A6 homozygote deletion genotype and the CYP2E1 genotypes were examined relative to smoking status.

Conclusions: Our data indicate that neither a relationship between genetically impaired nitrosamine metabolism and tobacco-smoking consumption, nor urothelial cancer risk related to the CYP2A6 deletion genotype and CYP2E1 Rsa I genotype was found in Japanese population.

Key words: CYP2A6, CYP2E1, urothelial cancer, smoking, Japanese

Introduction

There is considerable evidence to support the view that carcinogenic N-nitrosamine derivatives are important factors in human cancer. Human CYP2A6 and CYP2E1 are enzymes known to be involved in the metabolic activation of N-nitrosamines (1–3). Recently, deletion-type alleles of the CYP2A6 (CYP2A6*4) have been identified (4), and a high frequency of the gene deletion among Asian populations has been reported (4, 5). Diminished CYP2A6 activity might decrease the production of genotoxic metabolites of these nitrosamines and potentially reduce the risk of tobacco-smoking related cancer by this mechanism. The CYP2E1 gene is also present in the population in various polymorphic forms. The variant detectable by Rsa I digestion (called the C2 variant) contains polymorphic base substitution sites in a region of the gene that is not transcribed but that appears to be involved in the transcriptional regulation of CYP2E1 expression. In this study, we examine whether CYP2A6 deletion and CYP2E1 Rsa I polymorphism combined with tobacco smoking are associated with urothelial cancer risk in a Japanese study population.

Material and Methods

Blood samples were taken from 137 urothelial cancer patients (107 men, 30 women, mean age 69.3 years; 95 cases of bladder cancer, 14 cases of renal pelvic cancer, 16 cases of ureter cancer and 12 overlapping cases) and 217 healthy controls, all of whom were Japanese. Patients were treated at the University of Occupational and Environmental Health Hospital and had been newly histologically diagnosed with urothelial cancer during the period from September 1992 to June 1995. A total of 217 controls (169 men, 48 women, mean age 68.5 years), frequency-matched with cases for age and gender, were selected from the people who visited a medical
institution located in Kitakyushu City for a general health check-up between September 1993 and April 1995. All study subjects completed a questionnaire administered by a trained interviewer, covering medical, residential, occupational and smoking history. “Smoking” was summarized as smoker (those who had smoked) or non-smoker (those who had never smoked). All participants were given an explanation of the nature of the study, and informed consent was obtained. This study was approved by the ethics committee of University of Occupational and Environmental Health.

Genomic DNA was isolated from peripheral leukocytes by proteinase K digestion and phenol/chloroform extraction. The single PCR and RFLP methods were used to identify the CYP2A6 wild and variant alleles described, using the method described previously (4). A CYP2A6 – specific PCR reaction was accomplished with the primer pair Kd1F (forward): 5’ CCT GAT CGA CTA GGC GTG GTA 3’ and E3R (reverse): 5’ TCG TCC TGG GTG TTT TCC TTC 3’, yielding a single 215-base pair (bp) product. One hundred nanograms of DNA were amplified in a total volume of 40 µl containing 70 pmol of each primer, 1U of Taq polymerase, 2.2 mM MgCl₂, and PCR buffer. The amplification was performed by denaturing at 94°C for 3 min, and annealing and extending at 94°C for 30s, 56°C for 30s, and 72°C for 45s for 35 cycles. Ten µl each of the PCR products was then digested without further purification by the restriction enzymesMsp I, Xcm I and Del I in a total volume of 15 µl. The digested PCR products were identified in 3% agarose gels with ethidium bromide. The fragment patterns determined the presence of the CYP2A6*1, CYP2A6*2 and CYP2A6*3. The genetic polymorphism in the 5’-flanking region of CYP2E1 was determined by PCR amplification followed by digestion with Rsa I, using the method described previously (6). The predominant allele (C1) was sensitive to Rsa I digestion, and the C2 allele was resistant to Rsa I digestion.

Crude odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for CYP2A6 and CYP2E1 genotypes. Odds ratios were adjusted for age, gender and smoking status, using multiple logistic regression analysis by SPSS Medical Pack for Windows.

Results and Discussion

The frequencies of both CYP2A6 deletion and CYP2E1 Rsa I genotype for patients with urothelial cancer and controls, and their relation to urothelial cancer risk, are shown in Table 1. The frequencies of CYP2A6 *1/*1 or *1/*4 and *4/*4 were 97.1% and 2.9% in the patients, compared with 96.8% and 3.2% in the controls. There were no significant differences in these frequencies between the cancer cases and controls. The adjusted odds ratio of the CYP2A6 was 0.90 (95% CI 0.26–3.14). There were no CYP2A6*2 or CYP2A6*3 alleles among our samples. The population of the individuals with mutant CYP2E1 was higher in the controls (35.5% vs. 27.7%) for the heterozygote C1/c2 genotype; 6.0% vs. 4.4% for the homozygote C2/c2 genotype), the adjusted odds ratios being 0.68 and 0.67, respectively (95% CI 0.42-1.09 and 0.24-1.84). A comparison between individuals with homozygous C1 alleles and those with C2 alleles (C1/c2 and C2/c2) indicated an odds ratio of 0.67 (95% CI 0.43-1.05). In the present study, we had 80% power (two-sided test of significance, α=0.05) to detect an OR of 3.0 for CYP2A6 deletion type. For CYP2E1, we had 80% power (two-sided test of significance, α=0.05) to detect an OR of 1.9 (C1/c2), 3.3 (C2/c2) and 1.9 (any C2 allele) relative to the C1/c1 genotype, respectively.

In this study, we did not find any relationships between CYP2A6 deletion genotype and urothelial cancer development. Recently a novel mutation in exon 9 of the CYP2A6 gene was reported (7). This variant allele decreased CYP2A6 activity and was contained in the CYP2A6*4 allele. There is the possibility that this variant allele modifies the relationship between the CYP2A6 deletion genotype and cancer susceptibility.

Our study is the first to investigate the relationship between CYP2A6 deletion and urothelial cancer development. Our data indicate that neither a relationship between genetically impaired nitrosamine metabolism and tobacco-smoking consumption, nor urothelial cancer risk related to the CYP2A6 deletion genotype and CYP2E1 Rsa I genotype was found.

Acknowledgements

This work was supported in part by Grant-in-Aid from the Ministry of Education, Science and Culture of Japan (No.13670374).

---

Table 1 Relationship between CYP2A6 and CYP2E1 genotype and urothelial cancer

<table>
<thead>
<tr>
<th>CYP2A6 genotype</th>
<th>Controls (n=217)</th>
<th>Patients (n=137)</th>
<th>Crude OR (95% CI)</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% (n)</td>
<td>% (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*1/*1 or *1/*4</td>
<td>96.8% (210)</td>
<td>97.1% (133)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*4/*4</td>
<td>3.2% (7)</td>
<td>2.9% (4)</td>
<td>0.90 (0.26–3.14)</td>
<td>0.84 (0.24–2.96)</td>
</tr>
<tr>
<td>CYP2E1 genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1/c1</td>
<td>58.5% (127)</td>
<td>67.9% (93)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C1/c2</td>
<td>35.5% (77)</td>
<td>27.7% (38)</td>
<td>0.64 (0.40–1.02)</td>
<td>0.68 (0.42–1.09)</td>
</tr>
<tr>
<td>C2/c2</td>
<td>6.0% (13)</td>
<td>4.4% (6)</td>
<td>0.63 (0.23–1.72)</td>
<td>0.67 (0.24–1.84)</td>
</tr>
<tr>
<td>Risk for any C2 allele vs C1/c1</td>
<td>41.5% (90)</td>
<td>32.1% (44)</td>
<td>0.67 (0.43–1.05)</td>
<td>0.67 (0.43–1.05)</td>
</tr>
</tbody>
</table>

*ORs and 95% CI were adjusted for age, gender and smoking status.
References


