Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m³/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and ²²²Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO₄, SiO₂) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, ²²²Rn, HCO₃).

Résumé Les aquifères karstiques sont particulièrement sensibles à l’infiltration rapide d’eau de rivières, spécialement pendant les périodes de hautes eaux. A la suite d’une période de pluies soutenues sur le bassin de la rivière Suwannee (Floride, États-Unis), le niveau de cette rivière est monté de 3,0 à 5,88 m au-dessus du niveau de la mer, en avril 1996, et le débit a atteint 360 m³/s. Au cours de ces conditions de hautes eaux, l’eau de la Suwannee s’est introduite directement dans l’aquifère karstique supérieur de Floride, principale ressource d’eau potable de la région. Les modifications de la composition chimique de l’eau souterraine ont été quantifiées par un diminue des concentrations en calcium, silice et ²²²Rn, et par une augmentation du carbone organique dissous (COD), de l’acide tannique et des chlorures, par rapport aux conditions de basses eaux connues d’après le puits de contrôle voisin de Wingate Sink et les sources de la rivière Little. La part d’eau de rivière dans le mélange avec l’eau souterraine était de 0,13 à 0,65 à Wingate Sink et de 0,5 à 0,99 au puits W-17258, à partir des modèles de mélange binaire recourant à divers tracers. L’aptitude d’un traceur naturel à quantifier un mélange d’eau de rivière et d’eau souterraine s’est traduite par des différences dans les concentrations en traceurs des deux termes du mélange, et par la démonstration de la façon dont les traceurs réagissent dans le mélange. Des solutés avec des concentrations semblables à celles des deux termes du mélange (Na, Mg, K, Cl, SO₄, SiO₂) n’ont pas été des traceurs aussi efficaces pour quantifier le mélange entre l’eau de la rivière et l’eau souterraine que ceux pour lesquels existent des différences de concentrations plus fortes entre celles des deux termes (Ca, acide tannique, COD, ²²²Rn, HCO₃).

Resumen Los acuíferos kársticos presentan una gran facilidad para la infiltración de agua procedente de los ríos, principalmente en épocas de crecida. Tras un prolongado periodo de lluvias en la cuenca del Río Suwannee (Florida, EEUU) en abril de 1996, el río presentó una gran crecida, pasando su nivel de 3.0 a 5.88 m (s.n.m.) y con un caudal punta de 360 m³/s.
Introduction

Understanding the extent and magnitude of river/aquifer interactions is essential in addressing issues of water quality and supply and in ensuring the health of ecosystems (Winter et al. 1998). Karstic aquifers are more susceptible to the rapid introduction of contaminants from surface waters through sinkholes, conduits, and other solution features than are other types of aquifers (White 1993). Groundwater-flow patterns in karst regions are difficult to characterize because of the heterogeneities in the aquifer matrix that result from spatially varying amounts of conduit and diffuse flow. In areas where an aquifer is hydraulically connected to a stream, both groundwater and surface-water systems are especially susceptible to contamination. For example, groundwater can discharge contaminants to a stream, resulting in degradation of surface-water quality (Hornsby and Mattson 1996). Conversely, sinking streams in karst areas can be a major source of contamination to an aquifer (McConnell and Hacke 1993; Plummer et al. 1998).

The Suwannee River and the Upper Floridan aquifer in Georgia and Florida, USA, have typically been studied as separate resources, even though they are hydraulically connected. In the Suwannee River basin, only a few studies have described interactions between groundwater and surface water, and these interactions have been shown to impact both systems (Ceryak 1977; Crane 1986; Katz et al. 1997). During low-flow conditions, groundwater contributes a major part of the nitrate load along the middle reach of the Suwannee River (Hornsby and Mattson 1996; Pittman et al. 1997). During high-flow conditions, river water can flow into the aquifer and affect the chemical composition of groundwater (Crane 1986; Hirten 1996).

This paper presents the results of a study designed to characterize the extent and mechanisms of hydrochemical interactions between the Suwannee River and the Upper Floridan aquifer near Little River Springs, Florida, during high-flow conditions. This area was chosen for study because water from the Suwannee River reportedly backflows into Little River Springs during high flow and tea-colored water (presumably river water) has been reported in wells and sinkholes as far as 5 km from Little River Springs (W. Skiles 1995, Karst Environmental Services Inc., personal communication). In this report, changes in groundwater chemistry are compared for low- and high-flow conditions, and the interactions between river water and the Upper Floridan aquifer are evaluated using chemical tracers [majors ions, tannic acid, dissolved organic carbon (DOC), silica, and radon (222Rn)]. Geochemical mass-balance models were used to estimate mixing ratios of river water and groundwater. Results of this study provide a greater understanding of river/aquifer interactions in karst systems.

Study area

The Little River Springs study area is located in southwestern Suwannee County, Florida, in the Gulf Coastal Lowlands physiographic subdivision, encompassing approximately 50 km² of karst terrain in the lower Suwannee River basin; locations are shown in Figure 1. The lower Suwannee River basin has been defined as that part of the basin below the confluence of the Withlacoochee River (Figure 1; Crane 1986). The area consists of gently sloping plains that extend toward the coast, ranging in elevation from about 3 to 18.5 m (above mean sea level). The study area is covered by a thin veneer of sand 3–12 m thick underlain by limestone. Mature karst features are evident; for example, numerous sinkholes and closed basin depressions exist, and springs commonly discharge to the river (Figure 1). Surface drainage is virtually nonexistent in the karst plain due to the permeable sands at land surface and the highly transmissive karst limestone below (Crane 1986). The climate is characterized by long, warm summers and short, mild winters. During 1961–90, average annual temperature was 20.3°C and average rainfall was 140 cm at Branford, Florida (Owenby and Ezell 1992). Rainfall has a bimodal distribution that typically peaks in March due to frontal storm systems, and in September due to subtropical depressions and convective storms (Owenby and Ezell 1992). Evapo-
transpiration ranges from approximately 77 to 99 cm/year (Berndt et al. 1996).

The Ocala Limestone (late Eocene age) and the Suwannee Limestone (Oligocene age) outcrop at or near the surface in the study area and are marked by numerous karst features (Figure 1; Burnson 1982; Crane 1986). The Avon Park and Oldsmar Formations of middle and early Eocene age, respectively, underlie the Suwannee and Ocala Limestones (Miller 1986). These formations contain numerous fractures and lineaments that provide preferential flow paths where
solution channels often form (Beatty 1977; Crane 1986). Collectively, these formations make up the Upper Floridan aquifer. The Ocala Limestone is one of the most permeable units of the Floridan aquifer system, due to the presence of large solution channels, and these channels carry most of the flow (Crane 1986; Miller 1986). The Ocala Limestone is composed of a white, fossiliferous, marine limestone that ranges from 30–60 m in thickness.

The Upper Floridan aquifer is composed of these permeable carbonate units interspersed with units of lower permeability, and it is approximately 400 m thick in the study area. The Floridan aquifer system consists only of the Upper Floridan aquifer in the study area, because the middle confining unit of the aquifer is absent (Miller 1986). Transmissivity of the aquifer ranges from 23,000–100,000 m²/d (Miller 1986; Bush and Johnson 1988). Annual recharge to the aquifer can exceed 35 cm in the study area, where infiltration is rapid due to the thin mantle of sand covering karst limestone (Crane 1986; Grubbs 1998). The Upper Floridan aquifer is the primary source of irrigation and drinking water for north-central Florida (Marella and Fanning 1996).

The Upper Floridan aquifer is unconfined and in direct hydraulic contact with the Suwannee River in southwestern Suwannee County. Water is exchanged between the river and aquifer primarily through springs and diffuse flow (Pittman et al. 1997). During low-flow periods, usually in the summer and autumn, water from the aquifer discharges to the river and sustains base flow (Crane 1986; Pittman et al. 1997). The potentiometric surface of the Upper Floridan aquifer has a gradient of 0.5–1.5 m/km toward the river during periods of low river stage (Figure 1). During periods of heavy rainfall, typically in March and April, river stage rises abruptly and exceeds groundwater levels; then, river water flows directly into the aquifer through conduits, small cavities, and fractures (Hull et al. 1981; Hirten 1996; Katz et al. 1997). However, the extent of mixing in the aquifer and spring conduit systems is not known.

Two large karst features are present in the study area, Little River Springs and Wingate Sink. The vent for Little River Springs is connected to the river by a run that is approximately 100 m long. The spring conduit system, mapped by cave divers, ranges in depth from 24–37 m below land surface and extends along two main conduits into the aquifer (Skiles 1976). The larger conduit leads approximately 1.6 km northeast from the spring vent away from the river. The smaller conduit leads southeast along the northeastern side of the river (Skiles 1976). Average discharge of Little River Springs into the river ranges from 1.9–2.4 m³/s during low flow (Rosenau et al. 1977; Pittman et al. 1997). During high-flow conditions on the river, river water flows into the spring vent.

Wingate Sink, in the northwestern part of the study area (Figure 1), is a vertical shaft that extends approximately 49 m before opening up into a large room approximately 90 m long (W. Skiles 1998, Karst Environmental Services Inc., personal communication). The general flow direction in Wingate Sink trends northeast to southwest during low-flow periods, following regional groundwater flow. Wingate Sink reportedly becomes tannic during high-flow periods (W. Skiles 1994, Karst Environmental Services Inc., personal communication; W. Wingate 1998, personal communication).

The Suwannee River, designated an “outstanding Florida water” because of its recreational and scenic value to the State (Fernald and Patton 1984), originates in the western side of the Okefenokee Swamp in Georgia. The average annual discharge of the Suwannee River at Branford is 197 m³/s (Meadows et al. 1991). Peak mean daily discharge in the Suwannee River usually occurs in March or April, due to precipitation from continental frontal systems (Crane 1986). A secondary peak may occur in the autumn (usually September) from tropical or subtropical depressions. During 1931–93, the average mean daily discharge of the Suwannee River at Branford was 338 m³/s for April, compared to 175 m³/s for September (Franklin et al. 1995).

Methods

Fifteen monitoring wells, ranging in depth from 10.2–22.0 m, were installed in the Upper Floridan aquifer from May through August 1995 using standard protocols (Lapham et al. 1995). Wells were constructed of threaded 10-cm-diameter PVC casing with 1.5-m open intervals. At three sites, (Figure 1), nested wells were installed at 3 depth ranges. Wells were drilled approximately 2 m below the bottom of the casing. The annular space of the well was sealed with bentonite and cemented above the bentonite to the surface. At least one cavity or “soft rock zone” of 0.2 m or more was noted in 7 of the 15 wells (K. Campbell 1996, Florida Geological Survey, written communication). Numerous subterranean karst features were identified in this area using ground-penetrating radar (Collins et al. 1994). Surface-water sampling sites were established on the Suwannee River at stations SR5.7 and SR3.75, above and below Little River Springs, respectively (Figure 1). Sampling sites were also established at Little River Springs and Wingate Sink (Figure 1).

Water levels in the wells were measured monthly during low flow (July through early March 1996), and weekly during high flow (late March through April 1996). For this discussion, July 1995 through early March 1996 is referred to as the low-flow period and April 1996 as the high-flow period. Water levels were also measured at Wingate Sink from February through April 1996 and at Little River Springs during high flow (April 1996). Discharge for the Suwannee River was...
Water samples were collected quarterly from monitoring wells and Wingate Sink during July 1995 through January 1996. Water samples were also collected from Little River Springs and the Suwannee River (SR3.75 and SR5.7) in October 1995 and April 1996. A subset of sites was sampled during high flow: Wingate Sink, W-17258, W-17259, W-17260, W-17263, and W-17269. Groundwater samples were collected using a submersible pump constructed of stainless steel and Teflon. Prior to collection of water samples, at least three casing volumes were purged from the well (Koterba et al. 1995). The pump head was positioned approximately 0.5 m below the top of the open interval. During and after purging the well, specific conductance, pH, dissolved oxygen, and temperature were monitored in a closed flow-through chamber. When those properties stabilized, samples of groundwater were collected. River samples were collected using the equal-width-increment method collected into 3-L Teflon bottles (Shelton 1994).

Water samples were collected and analyzed for major ions, nutrients, and DOC using standard protocols (Koterba et al. 1995). Samples for analysis of 222Rn were collected using a glass syringe with a stainless steel needle, which was inserted into a small chamber with a Teflon membrane where backflow pressure could be created to eliminate air bubbles in the sample. A 10-mL water sample was withdrawn and injected into a scintillation cocktail. Tannins and lignins (reported as tannic acid) were measured colorimetrically in the field using a portable spectrophotometer, with a detection limit of 0.1 mg/L and an error of ± 0.08 mg/L (Hach Company Inc. 1992). Data from quality-assurance samples (15% of total) indicate that no contamination resulted from sampling procedures and equipment and that good analytical reproducibility occurred in the laboratory.

Geochemical data were analyzed using statistical and graphical methods and geochemical modeling techniques. Saturation indices of waters with respect to selected minerals were computed using WATEQFP (Plummer et al. 1994). Models that described mixing of river water and groundwater were derived using mass-balance equations in NETPATH (Plummer et al. 1994).

Results and Discussion

Changes in River Stage and Discharge

Stage and discharge of the Suwannee River at Branford were relatively low from July 1995 through December 1995, compared to long-term values (1932–94) (Giese and Franklin 1996b). Both river stage and water levels in the aquifer declined approximately 3–6 mm/d during July through mid-December 1995 in response to below-normal rainfall in July through September, compared to average monthly rainfall at Mayo (in Florida) and Quitman, Tifton, and Homerville (in Georgia) during 1961–90 (Owenby and Ezell 1992). The lowest instantaneous river discharge at Branford occurred on 19 December 1995, and was 54.1 m3/s (stage of 2.49 m) (Franklin and Meadows 1996). A flow of this low magnitude is likely to occur every 20–50 years (Giese and Franklin 1996a). Hydrographs are shown in Figures 2 and 3.

River stage gradually began to rise (approximately 6 mm/d) in late December and continued through mid-March 1996, when stage began to rise at a rate of more than 9 mm/d in response to above-normal rainfall throughout the basin (Figures 2 and 3). From about the end of February or early March until April 12, discharge at Branford was less than that at Ellaville, indicating that the river was losing water to groundwater (Figure 3). Discharge peaked in the upper basins between 1 and 5 April and peaked at Ellaville on 7
April. Stage of the Suwannee River at Branford (the farthest downstream gaging station) peaked at 5.88 m on 9 April (Figure 2). The peak in discharge was largely the result of March precipitation, which averaged 5–13 cm above normal for the month over the entire Suwannee River basin (Owenby and Ezell 1992; Figure 2). The corresponding instantaneous peak flow of 360 m3/s was less than 20% of the maximum recorded instantaneous peak flow (Franklin and Meadows 1996). A peak of this magnitude is likely to occur every 2 years or less on average (Giese and Franklin 1996b). After 12 April, discharge at Branford was equal to or it exceeded the discharge at Ellaville, indicating that the river discharge was receiving a contribution from groundwater.

Changes in Groundwater Levels

Groundwater levels decreased continuously from July through December 1996. Minimum groundwater levels in wells 2 km or less from the river and Wingate Sink occurred between 11 January and 20 February, about 1–2 months after minimum values of river stage (Figure 2). The lowest groundwater elevation (3.05 m) was measured in well W-17258 on 11 January. Groundwater levels in wells 3–4 km from the river did not reach their minimum elevations until early March. However, groundwater levels in most wells started to rise in mid to late February, when rainfall amounts increased and covered larger parts of the basin (Figure 3).

On 9 April 1996, when river stage peaked at 6.31 m at Little River Springs and tannic-colored river water was observed flowing into Little River Springs, water levels at Wingate Sink and wells within 2.0 km of the river peaked almost synchronously with the river (Figure 2). Groundwater levels in Wingate Sink and wells W-17258 and W-17260 were 6.30, 6.30, and 6.19 m, respectively, on 10 April, a rise of more than 3.2 m from low-flow values. Water levels in wells 3–5 km from the river were greater than 5.8 m during the high-flow period. For example, water levels in wells W-17270 and W-17272 were 6.11 and 6.18 m, respectively, on 10 April, as shown in Figure 4A. A transient low or saddle was formed in the potentiometric surface approximately 1.6 km northeast of the river on 9–10 April, as shown in Figure 4B. Groundwater levels in this area ranged from 5.41 m at W-17263 to 5.59 m at W-17262. Water levels in wells 3–5 km from the river continued to rise through 25 April, when the last measurement was taken (Figure 2).

Water levels measured in nested wells W-17267 through W-17269 and W-17264 through W-17266 indicate that a relatively strong upward vertical gradient of 1–2 cm/m existed in the aquifer between 27 March and 10 April. During the low-flow period, upward vertical gradients were usually less than 0.5 cm/m in the aquifer. The relatively strong upward movement of water in the aquifer probably occurred in response to a pressure increase in the aquifer during high flow from river inflow.

Chemistry of Groundwater and River Water During Low-Flow Conditions

Groundwater and river water were of the calcium-bicarbonate type during the low flow period, but the concentrations of major ions varied considerably from well to well. Results of chemical analyses are shown in Tables 1 and 2 and are plotted in Figure 5. Water in the Upper Floridan aquifer evolves under open-CO$_2$ conditions (Katz 1992). Rapid recharge rates in the study...
area, which result from percolation through highly permeable sands, facilitate the downward transport of oxygen and dissolved DOC from the unsaturated zone. The chemical character of water from the Upper Floridan aquifer can be quite variable because of short groundwater residence times, high recharge rates, and varying amounts of direct recharge to the aquifer through sinkholes and other solution features (Sprinkle 1989; Katz 1992).

Groundwater and river water are near saturation with respect to calcite during low flow (–0.56 to 0.51). Waters that are undersaturated (a negative SI value; Figure 5) with respect to calcite and dolomite are capable of dissolving these minerals and probably are indicative of recent recharge water (Katz et al. 1998). Water recharging the Upper Floridan aquifer in this area is usually elevated in carbon dioxide and organic acids, which promote the dissolution of carbonate bedrock material (Sprinkle 1989). Other evidence of calcite dissolution in the Upper Floridan aquifer includes (1) a substantial increase in the concentration of Ca\(^{2+}\) and HCO\(_3\) (dissolved inorganic carbon, DIC) compared to river water (Table 1); and (2) an enrichment in \(\delta^{13}C\) of DIC in water from Little River Springs (–12.0 per mil (%)) during low flow; Katz and Hornsby 1998). In comparison, the \(\delta^{13}C\) of DIC in water from the Little River, which is a disappearing stream and a tributary basin to the Suwannee River, was –24.9 per mil (Katz et al. 1998). Little River Springs, which intercepts water from large parts of the aquifer, derives its \(^{13}C\) composition from nearly equimolar amounts of carbon from CO\(_2\) (\(\delta^{13}C\) = –24‰ from degradation of organic material) and from dissolution of calcite (\(\delta^{13}C\) = 0‰), according to the equation:

\[
\text{CaCO}_3 + \text{H}_2\text{CO}_3 = \text{Ca}^{2+} + 2\text{HCO}_3^- \quad (1)
\]

The Suwannee River is acidic as it emerges from the Okefenokee Swamp; pH values range from 4.0–4.5 due to the high concentration of humic and fulvic acids (Hull et al. 1981). The river water also has low concentrations of alkalinity and dissolved solids (Berndt et al. 1996). As the river moves from the upper to the lower part of the basin during low flow, increases occur in pH and specific conductance, as well as in concentrations of Ca, Mg, and HCO\(_3\). A corresponding decrease occurs in organic carbon, reflecting the increasing contribution of groundwater to the total volume (Hull et al. 1981). Calcium, magnesium, and bicarbonate concentrations in Suwannee River water at Branford are generally two or three times greater than the upstream concentrations during low flow (Hull et al. 1981). Overall, calcium, alkalinity, silica, dissolved solids, and radon concentrations were higher in groundwater than in river water. Concentrations of iron, DOC, and tannic acid typically were much higher in river water than in groundwater throughout the study period (Table 1).

Changes in Chemistry of Groundwater and River Water During High Flow Conditions

During the study period, differences in chemistry between the Suwannee River and groundwater were more pronounced during high-flow than low-flow conditions.
Table 1 Median and range of pH and concentrations (in mg/L unless otherwise stated) of selected constituents in samples of groundwater and water from the Suwannee River collected in October 1995 and April 1996. Low-flow river water includes samples from the Suwannee River at Branford. n Number of samples; DS dissolved solids; DOC dissolved organic carbon; pCi/L picocuries per liter

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Groundwater</th>
<th>Suwannee River</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low flow</td>
<td>High flow</td>
</tr>
<tr>
<td></td>
<td>(n = 49)</td>
<td>(n = 6)</td>
</tr>
<tr>
<td>pH (units)</td>
<td>7.38 (7.0–7.8)</td>
<td>7.5 (7.1–7.8)</td>
</tr>
<tr>
<td>Ca</td>
<td>65.0 (21–98)</td>
<td>47 (11–99)</td>
</tr>
<tr>
<td>Mg</td>
<td>4.9 (0.55–17)</td>
<td>4.85 (1.8–11)</td>
</tr>
<tr>
<td>Na</td>
<td>3.0 (2.2–8.7)</td>
<td>4.25 (1.8–5.8)</td>
</tr>
<tr>
<td>K</td>
<td>2.2 (0.3–21)</td>
<td>2.2 (0.2–6.9)</td>
</tr>
<tr>
<td>HCO₃</td>
<td>237 (110–383)</td>
<td>191 (37–252)</td>
</tr>
<tr>
<td>Cl</td>
<td>4.1 (2.4–9.7)</td>
<td>5.1 (2.8–10)</td>
</tr>
<tr>
<td>SO₄</td>
<td>9.0 (1.4–31)</td>
<td>7.8 (3.6–30)</td>
</tr>
<tr>
<td>Fe (µg/L)</td>
<td><3.0 (<3.0–180)</td>
<td>76.5 (<3–480)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>6.5 (5.2–10.0)</td>
<td>6.1 (5.2–6.6)</td>
</tr>
<tr>
<td>NO₃–N</td>
<td>0.62 (<0.05–9.9)</td>
<td>0.215 (<0.05–6.9)</td>
</tr>
<tr>
<td>DS</td>
<td>218 (66–329)</td>
<td>175 (97–308)</td>
</tr>
<tr>
<td>DOC</td>
<td>0.4 (0.1–1.1)</td>
<td>1.2 (0.1–28)</td>
</tr>
<tr>
<td>Tannic acid</td>
<td>0.2 (<0.1–0.7)</td>
<td>0.35 (0.1–6.1)</td>
</tr>
<tr>
<td>Radon (pCi/L)</td>
<td>480 (190–1000)</td>
<td>200 (37–350)</td>
</tr>
</tbody>
</table>

conditions. For example, median dissolved-solids concentrations were 218 and 183 mg/L in groundwater and river water, respectively, during low flow, but concentrations were 175 and 88 mg/L in groundwater and river water, respectively, during high flow (Table 1). During high flow, river water retains the chemical characteristics of its upstream basins, although this phenomenon depends on the location and amount of recharge (Kincaid 1998).

During high-flow conditions, the chemical composition of water from the river, Little River Springs, and well W-17258 changed from a Ca–HCO₃ type to a mixed water type (Figure 5). Calcium content decreased from 60–70% of the total cation equivalents at low flow to about 30–40% of the total in water from the river, Little River Springs, and well W-17258. The content of Mg, Na, and K increased to about 60% of total cation equivalents, and Ca and SO₄ increased to about 60% of the total anion equivalents (Figure 5). In contrast, the chemical composition of water from other wells did not change significantly, and calcium and bicarbonate remained the dominant ions (Figure 5). Water from Wingate Sink remained a calcium–bicarbonate type during high flow; however, some small changes in chemical composition occurred, including a 10% decrease in Ca concentration and a small corresponding increase in Na and Mg concentrations.

Saturation indices of water from the Suwannee River, Little River Springs, Wingate Sink, and well W-17258 indicate undersaturation with respect to calcite and dolomite during high-flow conditions. Calcite SI values decreased from 0.10 to –0.45 in well W-17258, from 0.17 to –0.30 in Wingate Sink, and from 0.09 to –3.50 in the river during high flow. Saturation indices of water samples from other wells remained near 0.0 with respect to calcite and dolomite (Figure 5).

DOC concentrations increased significantly in the Suwannee River, Little River Springs, Wingate Sink, and well W-17258 during high flow compared to low flow. DOC averaged 12 mg/L in the river during the low-flow period but increased to 30 mg/L during high flow (Figures 4 and 5; Table 2). DOC concentrations also increased from less than 0.1 to 28 mg/L and from 0.4–8.7 mg/L in water from well W-17258 and Wingate Sink, respectively, during high flow. The median DOC concentration in other groundwater samples was 0.7 mg/L during high flow compared to 0.4 mg/L for low flow. Large increases in DOC at Wingate Sink and well W-17258 indicate the likelihood of river water moving into the aquifer and mixing with groundwater at these sites. Other evidence for mixing of river water with groundwater at these two sites during high flow is also indicated by an increase in tannic acid (tannins and lignins). Tannins and lignins usually occur in the bark and leaves of plants such as cypress trees, and bottomland hardwoods such as those present in the Upper Suwannee River and Alapaha River basins (Figure 1). Tannic-acid concentrations were generally low in groundwater (ranging from less than 0.1 to 0.7 mg/L) and in river water (0.4–2.8 mg/L) during low flow but increased significantly during high flow. Median tannic concentrations increased from 2.8–5.8 mg/L in river water, from 0.2–6.1 mg/L in well W-17258, and from 0.1–2.2 mg/L in Wingate Sink during high flow (Figure 4 and Table 2). Median concentration of tannic acid in other groundwater was 0.2 mg/L during high flow.

Additional evidence of mixing of river water with groundwater at Wingate Sink, well W-17258, and Little River Springs is indicated by changes in concentrations of silica and radon (222Rn). Silica concentrations generally increase when waters are in contact with aquifer
materials containing silica, due to the relatively long residence times of groundwater in the aquifer compared to the river water. Silica concentrations in the river, Little River Springs, Wingate Sink, and well W-17258 decreased during high flow (Table 1 and 2). During low flow, ^{222}Rn concentrations ranged from 190–1000 pCi/L in groundwater and from 100–110 pCi/L in the river (Table 1). However, during high flow, median ^{222}Rn concentrations decreased from 110–35 pCi/L in the river, from 340–140 pCi/L in Wingate Sink, and from 480–37 pCi/L in well W-17258, respectively (Table 2). Concentrations of ^{222}Rn remained nearly unchanged in other groundwater samples during high flow, ranging from 160–350 pCi/L (Table 2). Radon concentrations tend to be elevated when waters are in contact with rocks or sediments containing uranium. When waters are open to the atmosphere, ^{222}Rn degasses, resulting in concentrations of ^{222}Rn in river water that are typically 3–4 orders of magnitude lower than concentrations in groundwater (Wanty and Nordstrom 1993).

Quantifying Hydrochemical Interactions Between Groundwater and River Water

The degree of mixing of river water and groundwater can be quite variable, depending upon such factors as (1) differences in the hydraulic head in the aquifer and hydrostatic pressure in the river, and (2) the degree of connectivity between parts of the aquifer and the river. To estimate the degree of mixing of river water and groundwater in well W-17258 and Wingate Sink during high-flow conditions, a two end-member mixing model was used. The fraction of river water (f_{rw}) in the mixture is calculated using the following expression:

$$f_{rw} = (Y_m - Y_{gw})/(Y_{rw} - Y_{gw})$$

where Y_m, Y_{gw}, and Y_{rw} denote the concentrations of a selected element in the mixture, groundwater, and river water, respectively.

Various chemical tracers were evaluated as to their effectiveness in quantifying the degree of mixing of groundwater and river water at W-17258 and Wingate Sink: SiO$_2$, DOC, ^{222}Rn, tannic acid, dissolved solids, and selected major ions (Ca, Mg, Na, K, Cl, HCO$_3$, SO$_4$). The effectiveness of a particular natural tracer in quantifying f_{rw} is related to the differences in tracer concentrations of the two end members, and how conservatively the tracer travels with the mixed water without subsequent changes in concentration due to chemical, physical, or biological processes. Mixing models were based on the following assumptions: (1) valid groundwater-flow patterns are derived from hydraulic-head data, (2) the concentrations of these
<table>
<thead>
<tr>
<th>Site name</th>
<th>Date</th>
<th>Temp</th>
<th>pH</th>
<th>DO</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Cl</th>
<th>SO₄</th>
<th>HCO₃</th>
<th>DOC</th>
<th>SO₂</th>
<th>Fe</th>
<th>DS</th>
<th>NO₃</th>
<th>²²⁸Rn</th>
<th>Tannic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little River Springs</td>
<td>27/3/95</td>
<td>21.3</td>
<td>7.3</td>
<td>64</td>
<td>7.6</td>
<td>2.5</td>
<td>0.6</td>
<td>5.6</td>
<td>19</td>
<td>199</td>
<td>68</td>
<td>199</td>
<td>0.7</td>
<td>6.5</td>
<td>173</td>
<td>5.7</td>
<td>388</td>
<td>188</td>
</tr>
<tr>
<td>W-71271</td>
<td>10/4/96</td>
<td>21.6</td>
<td>7.5</td>
<td>61</td>
<td>4.9</td>
<td>4.4</td>
<td>5.2</td>
<td>4.5</td>
<td>7.9</td>
<td>374</td>
<td>0.5</td>
<td>7.4</td>
<td>208</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>W-71272</td>
<td>21/4/96</td>
<td>21.3</td>
<td>7.4</td>
<td>62</td>
<td>3.9</td>
<td>3.9</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>Wingate Sink</td>
<td>1/2/96</td>
<td>21.1</td>
<td>7.4</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>Wingate Sink</td>
<td>1/2/96</td>
<td>21.1</td>
<td>7.4</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>Wingate Sink</td>
<td>3/2/96</td>
<td>21.3</td>
<td>7.4</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>Wingate Sink</td>
<td>3/2/96</td>
<td>21.3</td>
<td>7.4</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>Wingate Sink</td>
<td>3/2/96</td>
<td>21.3</td>
<td>7.4</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
<tr>
<td>Wingate Sink</td>
<td>3/2/96</td>
<td>21.3</td>
<td>7.4</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
<td>7.9</td>
<td>365</td>
<td>0.5</td>
<td>7.9</td>
<td>201</td>
<td>0.8</td>
<td>150</td>
<td>0.3</td>
<td>321</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 2: Concentrations of major dissolved species and properties of water from the Suwannee River, Little River Springs, and wells, July 1995 to April 1996. DO Dissolved oxygen; DOC dissolved organic carbon; DS dissolved solids; SR5.7 and SR5.7 Suwanee River at stations 3.75 and 5.7, roughly 3.75 and 5.7 miles upstream from highway 27 bridge at Branford, respectively. Concentrations are in mg/L except for pH (pH units); Temp (°C); Fe (μg/L); radon (pCi/L); tannins and lignins (mg/L tannic acid).
Tracers are not altered by chemical or biological processes after the mixing of river water and groundwater has occurred, and (3) hydrodynamic dispersion is minimal and does not affect the concentrations of natural tracers in mixed waters.

Two sets of mixing models were calculated for each site, based on chemical data for water samples collected in October 1995 and January 1996 (representing the groundwater-end-member composition during low-flow conditions) \((\text{Table 3})\). The chemical composition of the river-water end member was represented by samples collected at river site SR3.75 (for well W-17258) and site SR5.7 (for Wingate Sink) in April 1996, and was selected based on the proximity of the river sites to the sink and well.

The fraction of river water \((f_{rw})\) that mixed with groundwater from well W-17258 ranges from 0.50 to 0.99 (median 0.92) during high flow using the aforementioned chemical tracers \((\text{Table 3})\). In general, most tracers provided similar estimates of \(f_{rw}\) \((0.87–0.99)\), with the exception of Cl (0.50). Chloride is typically considered a conservative tracer of water movement; however, differences between Cl concentrations in the river and aquifer were small, which limited its effectiveness at this site. Median Cl concentrations were 4.1 and 6.0 mg/L in groundwater and river water, respectively. The \(f_{rw}\) calculated using 222Rn concentrations gave a slightly higher value than other tracers (0.99). This higher value may result from degassing of 222Rn to the atmosphere. A large cavity that was reported with the exception of Cl (0.50). Chloride is typically considered a conservative tracer of water movement; however, differences between Cl concentrations in the river and aquifer were small, which limited its effectiveness at this site. Median Cl concentrations were 4.1 and 6.0 mg/L in groundwater and river water, respectively. The \(f_{rw}\) calculated using 222Rn concentrations gave a slightly higher value than other tracers (0.99). This higher value may result from degassing of 222Rn to the atmosphere. A large cavity that was reported during drilling in the open interval of this well may have resulted in loss of 222Rn due to degassing. \(f_{rw}\) could not be calculated using Mg, SO 4, and SiO 2, because the concentrations of these constituents were lower in the mixed water than those in the groundwater and river-water end members, which resulted in negative \(f_{rw}\) values. Again, the small differences in concentration of these constituents between groundwater and river water limited their effectiveness in quantifying mixing ratios. Alternatively, similar concentrations of these tracers in the two end-members and mixed waters may result from chemical reactions. The concentration of tannic acid in the water sample from well W-17258 was higher than that of both end members, resulting in an unrealistic \(f_{rw}\) (greater than 1.0) at this site. The higher tannic acid concentration in water from well W-17258 compared to river water may have resulted from mixing with river water that had a higher concentration of tannic acid, possibly during the rising limb of the hydrograph.

At Wingate Sink, \(f_{rw}\) ranged from 0.13–0.65 (median \(f_{rw}\) values were 0.35 and 0.31 using data from October 1995 and January 1996, respectively). A relatively high degree of variability of \(f_{rw}\), calculated using each tracer \((\text{Table 3})\), may result from a greater distance of travel for river water (1.5 km from the river) and possible chemical reactions that occur prior to or after mixing with groundwater. Presumably, the long travel distance of river water in the aquifer may provide a greater opportunity for 222Rn to degas, and other constituents to be exchanged, sorbed, diluted, or biologically altered. Most values of \(f_{rw}\) were within ±0.10 of the median, although \(f_{rw}\) values obtained using Mg and 222Rn were outside of this range. It is possible that the river-water composition measured at SR7.5 is not representative of the river water that actually mixes with groundwater near Wingate Sink. If this is the case, an undetermined end-member composition for river water would complicate the assumption of a two-end member mixing model. Magnesium concentrations were lower in groundwater samples from Wingate Sink during high-flow conditions than would have been expected based on mixing ratios of other constituents. Mg can exchange for Na or can be sorbed on the aquifer matrix. Radon can degas to the atmosphere through nearby sinks and conduits during its travel through the aquifer. River-water mixing fractions using Cl (0.31–0.35) agreed well with values obtained using other tracers. A larger difference in Cl concentrations between groundwater from Wingate Sink (during low flow) and river water \((\text{Table 2})\) provides a better estimate of mixing than the similar Cl concentrations of groundwater and river water at well W-17258. Calculated values of \(f_{rw}\) using SO 4 and dissolved-solids concentrations varied slightly more than 10% for the October and January samples, and these differences are most likely due to seasonal variations. Dissolved-solids concentrations were slightly higher in the October sample (220 mg/L) than in the January sample (184 mg/L). Mixing ratios based on SiO 2, DOC, and tannic acid were nearly identical using both sets of samples.

Changes in river chemistry may have occurred throughout the high-flow event. The sensitivity of \(f_{rw}\) to variations in river-water chemistry was evaluated for site W-17258 using a 10% uncertainty in the chemical

<table>
<thead>
<tr>
<th>Chemical constituent, tracer</th>
<th>Well W-17258</th>
<th>Wingate Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>0.94</td>
<td>0.93</td>
</tr>
<tr>
<td>Mg</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Na</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>K</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO 4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cl</td>
<td>0.50</td>
<td>0.87</td>
</tr>
<tr>
<td>HCO 3</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>SiO 2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DOC</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>DS</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>222Rn</td>
<td>0.99</td>
<td>—</td>
</tr>
<tr>
<td>Tannic acid</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Median</td>
<td>0.93</td>
<td>0.91</td>
</tr>
</tbody>
</table>
composition of river water (Suwannee River at 3.75, 10 April 1996, Table 2). Mixing ratios, estimated from constituents where the concentrations of the river water and groundwater end members were similar in magnitude (Na, Mg, K, Cl, SO₄, SiO₂), were significantly affected by a 10% change in river concentration and thus provide less reliable estimates. Mixing ratios computed from constituents where the concentrations of end members were not similar in magnitude (Ca, tannic acid, DOC, ²²²Rn, HCO₃) were not significantly affected by a 10% change in river concentration. For example, the fraction of river water (fᵣw) ranged from 0.93–0.95 using ±10% variation in calcium concentration in river water, where a difference of 87.2 mg/L existed between the groundwater and river-water end members. In contrast, fᵣw ranged from 0.84–1.0 using a ±10% variation in DOC concentrations in river water, where a difference of 28.9 mg/L existed between the two end members. Using a ±10% uncertainty in Cl concentration in river water (fᵣw), mixing ratios ranged from 0.22 to unrealistically high mixing fractions (>1.0) with a difference of only 0.60 mg/L between the two end members.

The effectiveness of naturally occurring solute tracers in quantifying interactions between river water and groundwater in the study area is highly dependent on the differences in end-member values and reactions that modify the chemical or isotopic composition after mixing has occurred. Solute tracers do not necessarily move conservatively with water, and reactions such as dissolution of aquifer minerals (primarily calcite and dolomite), cation exchange, and sorption/desorption can significantly alter the solute composition, depending on the travel time and/or distance between the river and sampling location (well, sink, or spring). Solute tracers, usually not as effective as oxygen and hydrogen isotopes in quantifying mixtures of river water and groundwater, provided reliable estimates of mixing of water from a sinking stream and groundwater in a mantled karst environment near the study area (Katz et al. 1998). The fact that fᵣw values calculated using various dissolved species, such as Ca, Mg, Na, and K, are similar in water from well W-17258 and Wingate Sink indicates that chemical reactions involving these species have not occurred or are very minor. For example, even though the mixed water is undersaturated with respect to calcite, and dissolution of calcite is thermodynamically possible, the mixed-water composition does not reflect any measurable calcite dissolution.

DOC is an effective tracer for mixing of river water and groundwater in this karstic system due to (1) relatively large differences in end-member concentrations, and (2) insufficient time for microorganisms to degrade the DOC because flow is rapid (Gibert et al. 1994). Also, fewer sites for microorganisms exist along conduits and fractures in limestone compared to those in unconsolidated sediments, due to the smaller ratio of surface area to volume. Similarly, tannic acid also is a good indicator of mixing between river water and groundwater in the study area. Using tannic-acid analyses offers two other advantages: (1) water samples can be analyzed relatively inexpensively in the field in about 30 min (Katz et al. 1998), and (2) tannic-acid concentrations can be used as a screening tool to determine whether water samples should be collected for other chemical and isotopic analyses.

Possible Mechanisms for Mixing of River Water and Groundwater

An extensive network of conduits, both laterally and vertically in the Little River springs area, provides a means for rapid migration of river water into the aquifer. Groundwater levels in wells located 1.6–4.8 km from the river respond almost immediately to changes in river stage (Ceryak 1977). Correlation coefficients between changes in river stage and water levels in wells 1–5 km from the river range from 0.60–0.98 and are highest for wells closest to the river (Hirten 1996).

Even though the river did not overflow its bank during April 1996, river water most likely moves into the aquifer through two main mechanisms: (1) migration into the top of the aquifer adjacent to the river by expanded bank storage that consists of river water that has migrated laterally into the surficial sands adjacent to the river channel. This water eventually moves downward into the Upper Floridan aquifer through fractures and solution openings in the top of the limestone; and (2) migration directly into deeper parts of the aquifer through fractures, springs and/or conduit systems located along the river channel. These mechanisms are illustrated in Figure 6.

During high-flow conditions, chemical data indicate that the water from Little River Springs was river water. Water levels were at an altitude of 6.30 m in the Suwannee River, Little River Springs, Wingate Sink, and in wells W-17258 and W-17260 on 10 April 1996. River water was observed flowing into Little River Springs at that time. River water may have migrated into the aquifer to the vicinity of well W-17258 through conduits or fractures, which may connect the zone that well W-17258 taps into in the Little River Springs conduit system. During well drilling, cavities were identified in the open-interval of well W-17258 at depths ranging from 6–8 m. River water may have reached Wingate Sink to mix with groundwater through a complex network of fractures and conduits that are connected to the river channel, although river water was not detected in a shallow well located between the sink and the river (well W-17263).

Summary and Conclusions

During high-flow conditions in April 1996, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the source of water supply for...
northern Florida. Changes in the chemical composition of groundwater were investigated using naturally occurring geochemical tracers and mass-balance modeling techniques. Fifteen monitoring wells were installed open to the uppermost part of the aquifer in areas near Little River Springs, where numerous subterranean karst solution features were identified using ground-penetrating radar.

Following a period of sustained rainfall in the Suwannee River basin, the stage of the Suwannee River increased from 3.0–5.8 m above mean sea level in April 1996, and discharge of the Suwannee River peaked at 360 m3/s. During high-flow conditions in the Suwannee River, the chemistry of water in a nearby monitoring well (W-17258), Wingate Sink, and Little River Springs changed, reflecting the mixing of river water and groundwater. Concentrations of calcium, silica, radon (222Rn), and bicarbonate decreased, whereas concentrations of organic carbon, tannic acid, and chloride increased in water from these sites compared to low-flow conditions. The proportion (fraction) of river water in groundwater ranged from 0.13–0.65 at Wingate Sink and from 0.5–0.99 at well W-17258, based on binary mixing models using several solute tracers, including tannic-acid, chloride, silica, 222Rn, and dissolved organic carbon. The effectiveness of a particular natural tracer in quantifying mixing between river water and groundwater was related to differences in tracer concentrations of the two end members, and how conservatively the solute tracer travels in the mixed water without subsequent changes in concentration due to chemical, physical, or biological processes.

An extensive network of conduits, both laterally and vertically in the Little River Springs study area, provides a means for rapid migration of river water into the aquifer. River water most likely moves into the aquifer through two main mechanisms: (1) migration into the top of the aquifer adjacent to the river by expanded bank storage, and (2) movement into deeper parts of the aquifer through fractures, springs, and conduit systems located along and beneath the river channel. The combination of naturally occurring geochemical tracers along with hydrologic data provides a better understanding of the hydrochemical interaction between surface water and groundwater. Knowledge of the processes controlling the chemical composition of water in these dynamic karst systems can help regulators to make informed environmental decisions for protection of the valuable groundwater and surface-water resources.

Acknowledgments This study was funded by the National Water-Quality Assessment program of the US Geological Survey. The authors thank the following agencies and individuals for their assistance: the Suwannee River Water Management District, University of Florida, Wes Skiles and Peter Butt (Karst Environmental Services Inc.), Dr. J. Crayton Pruitt, Mr. Edward Roberts and family, and the Wingate family. The authors greatly appreciate the reviews by J.B. Cowart, Y. Eckstein, and J.B. Martin, which improved previous versions of this manuscript.

References

Berndt MP, Oaksford ET, Darst MR, Marella RM (1996) Environmental setting and factors that affect water quality in the Georgia–Florida Coastal Plain Study Unit. US Geol Surv WRIR 95–4268, 46 pp

Bush PW, Johnson RH (1988) Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. US Geol Surv 1403-C, 80 pp

Miller JA (1986) Hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina. US Geol Surv PP 1403-B, 91 pp

Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path version 2.0. US Geol Surv WRIR 94–4169, 130 pp

Shelton LR (1994) Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment program. US Geol Surv OFR 94–455, 42 pp

Skiles W (1976) Little River Spings cave system (cave diving section). National Speleological Society, 1 map

Sprinkle CL (1989) Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. US Geol Surv PP 1403-A, 105 pp
